Skip to main content
Log in

Neural and muscular adjustments following repeated running sprints

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study aimed to reveal the neural and muscular adjustments following a repeated-sprint (RS) running exercise. Sixteen subjects performed a series of neuromuscular tests before, immediately after and 30 min (passive recovery) post-RS exercise (12 × 40 m sprints interspaced by 30 s of passive recovery). Sprint times significantly lengthened over repetitions (+17% from the first to the last sprint; P < 0.05). After RS running exercise, maximal voluntary contraction torque of the plantar flexors (−11 ± 7.3%), muscle activation (twitch interpolation) (−2.7 ± 3.4%) and soleus maximal M-wave amplitude (−20 ± 17%) were significantly (P < 0.05) reduced but returned close to baseline after 30 min. Both soleus EMG activity and maximal Hoffmann reflex normalized with respect to M-wave amplitude did not change during the whole experiment. From pre- to post-RS exercise, evoked twitch response was characterized by lower peak torque and maximal rate of torque development (−13 and −11%, respectively, P < 0.05), but was not different from baseline after recovery. Peak tetanus at 20 and 80 Hz were 17 and 8% lower (P < 0.05) in the fatigued state, respectively. Acute muscle fatigue induced by RS running exercise is mainly peripheral as the short-term (30 min) recovery pattern of plantar flexors contractile properties follows that of the voluntary force-generating capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen B, Westlund B, Krarup C (2003) Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation. J Physiol 551(Pt1):345–356

    Article  CAS  PubMed  Google Scholar 

  • Avela J, Finni J, Komi PV (2006) Excitability of the soleus reflex arc during intensive stretch-shortening cycle exercise in two power-trained athlete groups. Eur J Appl Physiol 97:449–486

    Article  Google Scholar 

  • Balsom PD, Seger JY, Sjödin B, Ekblom B (1992) Maximal-intensity intermittent exercise: effect of recovery duration. Int J Sports Med 13(7):528–533

    Article  CAS  PubMed  Google Scholar 

  • Billaut F, Basset FA (2007) Effect of different recovery patterns on repeated-sprint ability and neuromuscular responses. J Sports Sci 28(8):905–913

    Article  Google Scholar 

  • Billaut F, Basset FA, Falgairette G (2005) Muscle coordination changes during intermittent cycling sprints. Neurosci Lett 380(3):265–269

    Article  CAS  PubMed  Google Scholar 

  • Bishop D, Edge J, Goodman C (2004) Muscle buffer capacity and anaerobic fitness are associated with repeated-sprint ability in women. Eur J Appl Physiol 92:540–547

    Article  PubMed  Google Scholar 

  • Bringard A, Denis R, Belluye N, Perrey S (2007) External elastic compression and muscle function in humans. Sci Sports 22:3–13

    Article  Google Scholar 

  • Clausen T, Nielsen OB, Harrison AP, Flatman JA, Overgaard K (1998) The Na+, K+ pump and muscle excitability. Acta Physiol Scand 162:183–190

    Article  CAS  PubMed  Google Scholar 

  • Davies CT, Young K (1983) Effect of temperature on the contractile properties and muscle power of triceps surae in humans. J Appl Physiol 55(1):191–195

    CAS  PubMed  Google Scholar 

  • Drust B, Rasmussen P, Mohr M, Nielsen B, Nybo L (2005) Elevations in core and muscle temperature impairs repeated sprint performance. Acta Physiol Scand 183(2):181–190

    Article  CAS  PubMed  Google Scholar 

  • Dupont G, Millet GP, Guinhouya C (2005) Berthoin relationship between oxygen uptake kinetics and performance in repeated running sprints. Eur J Appl Physiol 95(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Enoka RM, Stuart DG (1992) Neurobiology of muscle fatigue. J Appl Physiol 72:1631–1648

    Article  CAS  PubMed  Google Scholar 

  • Farina D, Merletti R, Enoka RM (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol 96:1486–1495

    Article  PubMed  Google Scholar 

  • Fitts RH, Metzger JM (1991) Mechanisms of muscular fatigue. In: Poortmans JR (ed) Principles of exercise biochemistry. Karger, Basel, pp 212–229

    Google Scholar 

  • Gibson H, Edwards RH (1985) Muscular exercise and fatigue. Sports Med 2(2):120–132

    Article  CAS  PubMed  Google Scholar 

  • Gill ND, Beaven CM, Cook C (2006) Effectiveness of post-match recovery strategies in rugby players. Br J Sports Med 40:260–263

    Article  CAS  PubMed  Google Scholar 

  • Girard O, Lattier G, Maffiuletti NA, Micallef JP, Millet GP (2008) Neuromuscular fatigue during a prolonged intermittent exercise: application to tennis. J Electromyogr Kinesiol 18(6):1038–1046

    Article  PubMed  Google Scholar 

  • Girard O, Racinais S, Micallef J-P, Millet GP (2009) Spinal modulations accompany peripheral fatigue during prolonged tennis playing. Scand J Med Sci Sport (in press)

  • Godt RE, Nosek TM (1989) Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle. J Physiol 412:155–180

    CAS  PubMed  Google Scholar 

  • Hautier CA, Arsac LM, Deghdegh K, Souquet J, Belli A, Lacour JR (2000) Influence of fatigue on EMG/force ratio and cocontraction in cycling. Med Sci Sports Exerc 32(4):839–843

    Article  CAS  PubMed  Google Scholar 

  • Jones DA (1996) High- and low-frequency fatigue revisited. Acta Physiol Scand 156:265–270

    Article  CAS  PubMed  Google Scholar 

  • Kalmar JM, Cafarelli E (1999) Effects of caffeine on neuromuscular function. J Appl Physiol 87(2):801–808

    CAS  PubMed  Google Scholar 

  • Kinugasa R, Akima H, Ota A, Ohta A, Sugiura K, Kuno SY (2004) Short-term creatine supplementation does not improve muscle activation or sprint performance in humans. Eur J Appl Physiol 91(2–3):230–237

    Article  CAS  PubMed  Google Scholar 

  • Lattier G, Millet GY, Martin A, Martin V (2004) Fatigue and recovery after high-intensity exercise Part II: recovery interventions. Int J Sports Med 25(7):509–515

    Article  CAS  PubMed  Google Scholar 

  • Lavender G, Bird SR (1989) Effect of sodium bicarbonate ingestion upon repeated sprints. Br J Sports Med 23:41–45

    Article  CAS  PubMed  Google Scholar 

  • Martin V, Millet GY, Lattier G, Perrod L (2005) Why does knee extensor muscles torque decrease after eccentric-type exercise? J Sports Med Phys Fitness 45(2):143–151

    CAS  PubMed  Google Scholar 

  • Mendez-Villanueva A, Hamer P, Bishop D (2007) Physical fitness and performance fatigue responses during repeated sprints matched for initial mechanical output. Med Sci Sports Exerc 39(12):2219–2225

    Article  PubMed  Google Scholar 

  • Mendez-Villanueva A, Hamer P, Bishop D (2008) Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity. Eur J Appl Physiol 103(4):411–419

    Article  PubMed  Google Scholar 

  • Millet GY, Lepers R (2004) Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Med 34:105–116

    Article  PubMed  Google Scholar 

  • Morana C, Perrey S (2009) Time course of postactivation potentiation during intermittent submaximal fatiguing contractions in endurance- and power-trained athletes. J Strength Cond Res 23(5):1456–1464

    PubMed  Google Scholar 

  • Racinais S, Girard O (2009) ITT: a tool to demonstrate muscle inactivation rather than to calculate a percentage of activation. In: Comments on point:counterpoint: the interpolated twitch does/does not provide a valid measure of the voluntary activation of muscle. J Appl Physiol 107:361

    Google Scholar 

  • Racinais S, Bishop D, Denis R, Lattier G, Mendez-Villaneuva A, Perrey S (2007a) Muscle de-oxygenation and neural drive to the muscle during repeated sprint cycling. Med Sci Sports Exerc 39:268–274

    Article  PubMed  Google Scholar 

  • Racinais S, Girard O, Micallef JP, Perrey S (2007b) Failed excitability of spinal motoneurons induced by prolonged running exercise. J Neurophysiol 97:596–603

    Article  CAS  PubMed  Google Scholar 

  • Rupp T, Girard O, Perrey S (2009) Redetermination of the optimal intensity modifies resting H-reflex recovery after a sustained moderate-intensity muscle contraction. Muscle Nerve (in press)

  • Sale D, Quinlan J, Marsh E, McComas AJ, Belanger AY (1982) Influence of joint position on ankle plantar flexion in humans. J Appl Physiol 52:1636–1642

    CAS  PubMed  Google Scholar 

  • Schieppati M (1987) The Hoffman reflex: a means for assessing spinal reflex excitability and its descending control in man. Prog Neurobiol 28:345–376

    Article  CAS  PubMed  Google Scholar 

  • Sinoway LI, Hill JM, Pickar JG, Kaufman MP (1993) Effects of contraction and lactic acid on the discharge of group III muscle afferents in cats. J Neurophysiol 69(4):1053–1059

    CAS  PubMed  Google Scholar 

  • Skof B, Strojnik V (2006) Neuro-muscular fatigue and recovery dynamics following anaerobic interval workload. Int J Sports Med 27(3):220–225

    Article  CAS  PubMed  Google Scholar 

  • Strojnik V, Komi PV (1998) Neuromuscular fatigue after maximal stretch-shortening cycle exercise. J Appl Physiol 84(1):344–350

    CAS  PubMed  Google Scholar 

  • Taylor JL, Todd G, Gandevia SC (2006) Evidence for a supraspinal contribution to human muscle fatigue. Clin Exp Pharmacol Physiol 33:400–405

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Perrey.

Additional information

Communicated by Arnold de Haan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrey, S., Racinais, S., Saimouaa, K. et al. Neural and muscular adjustments following repeated running sprints. Eur J Appl Physiol 109, 1027–1036 (2010). https://doi.org/10.1007/s00421-010-1445-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1445-3

Keywords

Navigation