Skip to main content
Log in

Fatigue resistance during high-intensity intermittent exercise from childhood to adulthood in males and females

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study examined the maturation pattern of fatigue resistance (FR) from childhood to adulthood in females and males during high-intensity intermittent exercise and compared FR between females and males in childhood and adolescence. Thirty males (boys 11.3 ± 0.5 years, teen-males 14.7 ± 0.3 years, men 24.0 ± 2.1 years) and 30 females (girls 10.9 ± 0.6 years, teen-females 14.4 ± 0.7 years, women 25.2 ± 1.4) participated in this study. They performed high-intensity intermittent exercise (4 × 18 maximal knee flexions and extensions with 1-min rest) on an isokinetic dynamometer at 120°s−1. Peak torque of flexors (PTFL) and extensors (PTEX), and total work (TW) were measured. FR was calculated as % of PTEX, PTFL, and TW in 4th versus 1st set. FR was greater (P < 0.05) in boys versus teen-males and men, and in teen-males versus men. In females, FR was greater (P < 0.05) in girls versus teen-females and women, but not different between teen-females and women. FR was not different in boys versus girls and in teen-males versus teen-females. FR for PTFL, PTEX, and TW correlated negatively (P < 0.001) with the respective peak values (r = −0.68 to −0.84), and FR for TW with peak lactate (r = −0.58 to −0.69). In addition, age correlated (P < 0.01) with FR for males (r = −0.75) and females (r = −0.55). In conclusion, FR during high-intensity intermittent exercise undergoes a gradual decline from childhood to adulthood in males, while in females the adult profile establishes at mid-puberty (14–15 years). The maturation profile of FR in males and females during development appears to reflect the maturation profiles of peak torque, short-term muscle power, and lactate concentration after exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen P, Saltin B (1985) Maximal perfusion of skeletal muscle in man. J Physiol 366:233–249

    PubMed  CAS  Google Scholar 

  • Armstrong N, Welsman JR, Chia MY (2001) Short term power output in relation to growth and maturation. Br J Sports Med 35(2):118–124. doi:10.1136/bjsm.35.2.118

    Article  PubMed  CAS  Google Scholar 

  • Arnett MG, DeLuccia D, Gilmartin K (2000) Male and female differences and the specificity of fatigue on skill acquisition and transfer performance. Res Q Exerc Sport 71(2):201–205

    PubMed  CAS  Google Scholar 

  • Barnes WS (1980) The relationship between maximum isometric strength and intramuscular circulatory occlusion. Ergonomics 23:351–357. doi:10.1080/00140138008924748

    Article  PubMed  CAS  Google Scholar 

  • Bonde-Petersen F, Robertson CH Jr (1981) Blood flow in “red” and “white” calf muscles in cats during isometric and isotonic exercise. Acta Physiol Scand 112(3):243–251. doi:10.1111/j.1748-1716.1981.tb06812.x

    Article  PubMed  CAS  Google Scholar 

  • Chia MYH (2001) Recovery of Wingate anaerobic test power following prior sprints of a short duration: a comparison between girls and women [abstract]. In: Rowland T (ed) Pediatric exercise science. Proceedings of 21st symposium of the European Group of pediatric work physiology, 2001 Sept 12–16; Corsendonk Priory. Human kinetics, 2001, pp 273

  • Clark BC, Manini TM, Thé DJ, Doldo NA, Ploutz-Snyder LL (2003) Gender differences in skeletal muscle fatigability are related to contraction type and EMG spectral compression. J Appl Physiol 94(6):2263–2272

    PubMed  Google Scholar 

  • Clark BC, Collier SR, Manini TM, Ploutz-Snyder LL (2005) Sex differences in muscle fatigability and activation patterns of the human quadriceps femoris. Eur J Appl Physiol 94:196–206. doi:10.1007/s00421-004-1293-0

    Article  PubMed  Google Scholar 

  • de Ruiter CJ, Goudsmit JF, Van Tricht JA, de Haan A (2007) The isometric torque at which knee-extensor muscle reoxygenation stops. Med Sci Sports Exerc 39(3):443–453. doi:10.1249/mss.0b013e31802dd3cc

    Article  PubMed  Google Scholar 

  • Dipla K, Makri M, Zafeiridis A, Soulas D, Tsalouhidou S, Mougios V, Kellis S (2008) An isoenergetic high-protein, moderate-fat diet does not compromise strength and fatigue during resistance exercise in women. Br J Nutr 100(2):283–286. doi:10.1017/S0007114507898679

    Article  PubMed  CAS  Google Scholar 

  • Doré E, Martin R, Ratel S, Duché P, Bedu M, Van Praagh E (2005) Gender differences in peak muscle performance during growth. Int J Sports Med 26(4):274–280. doi:10.1055/s-2004-821001

    Article  PubMed  Google Scholar 

  • Elert J, Sterner Y, Nyberg V, Gerdle B (2000) Lack of gender differences in the ability to relax between repetitive maximum isokinetic shoulder forward flexions: a population-based study among northern Swedes. Eur J Appl Physiol 83(4–5):246–256. doi:10.1007/s004210000300

    Article  PubMed  CAS  Google Scholar 

  • Esbjörnsson-Liljedahl M, Bodin K, Jansson E (2002) Smaller muscle ATP reduction in women than in men by repeated bouts of sprint exercise. J Appl Physiol 93(3):1075–1083

    PubMed  Google Scholar 

  • Falk B, Dotan R (2006) Child–adult differences in the recovery from high-intensity exercise. Exerc Sport Sci Rev 34(3):107–112. doi:10.1249/00003677-200607000-00004

    Article  PubMed  Google Scholar 

  • Glenmark B, Hedberg G, Kaijser L, Jansson E (1994) Muscle strength from adolescence to adulthood-relationship to muscle fibre types. Eur J Appl Physiol 68:9–19. doi:10.1007/BF00599235

    Article  CAS  Google Scholar 

  • Grosset JF, Mora I, Lambertz D, Pérot C (2008) Voluntary activation of the triceps surae in prepubertal children. J Electromyogr Kinesiol 18(3):455–465. doi:10.1016/j.jelekin.2006.11.002

    Article  PubMed  Google Scholar 

  • Halin R, Germain P, Bercier S, Kapitaniak B, Buttelli O (2003) Neuromuscular response of young boys versus men during sustained maximal contraction. Med Sci Sports Exerc 35(6):1042–1048. doi:10.1249/01.MSS.0000069407.02648.47

    Article  PubMed  Google Scholar 

  • Haralambie G (1982) Enzyme activities in skeletal muscle of 13–15 years old adolescents. Bull Eur Physiopathol Respir 18:65–74

    PubMed  CAS  Google Scholar 

  • Hebestreit H, Mimura K, Bar-Or O (1993) Recovery of muscle power after high-intensity short-term exercise: comparing boys and men. J Appl Physiol 74(6):2875–2880

    PubMed  CAS  Google Scholar 

  • Hicks AL, Kent-Braun J, Ditor DS (2001) Sex differences in human skeletal muscle fatigue. Exerc Sport Sci Rev 29(3):109–112. doi:10.1097/00003677-200107000-00004

    Article  PubMed  CAS  Google Scholar 

  • Hunter SK, Schletty JM, Schlachter KM, Griffith EE, Polichnowski AJ, Ng AV (2006) Active hyperemia and vascular conductance differ between men and women for an isometric fatiguing contraction. J Appl Physiol 101:140–150. doi:10.1152/japplphysiol.01567.2005

    Article  PubMed  Google Scholar 

  • Hunter SK, Griffith EE, Schlachter KM, Kufahl TD (2009) Sex differences in time to task failure and blood flow for an intermittent isometric fatiguing contraction. Muscle Nerve 39(1):42–53. doi:10.1002/mus.21203

    Article  PubMed  Google Scholar 

  • Kanehisa H, Okuyama H, Ikegawa S, Fukunaga T (1995) Fatigability during repetitive maximal knee extensions in 14-year-old boys. Eur J Appl Physiol 72(1–2):170–174. doi:10.1007/BF00964133

    Article  CAS  Google Scholar 

  • Kanehisa H, Okuyama H, Ikegawa S, Fukunaga T (1996) Sex difference in force generation capacity during repeated maximal knee extensions. Eur J Appl Physiol 73(6):557–562. doi:10.1007/BF00357679

    Article  CAS  Google Scholar 

  • Kent-Braun JA, Ng AV, Doyle JW, Towse TF (2002) Human skeletal muscle responses vary with age and gender during fatigue due to incremental isometric exercise. J Appl Physiol 93(5):1813–1823

    PubMed  CAS  Google Scholar 

  • Laforest S, St-Pierre DM, Cyr J, Gayton D (1990) Effects of age and regular exercise on muscle strength and endurance. Eur J Appl Physiol 60(2):104–111. doi:10.1007/BF00846029

    Article  CAS  Google Scholar 

  • Martin PG, Rattey J (2007) Central fatigue explains sex differences in muscle fatigue and contralateral cross-over effects of maximal contractions. Pflugers Arch 454(6):957–969. doi:10.1007/s00424-007-0243-1

    Article  PubMed  CAS  Google Scholar 

  • Martin RJ, Dore E, Twisk J, van Praagh E, Hautier CA, Bedu M (2004) Longitudinal changes of maximal short-term peak power in girls and boys during growth. Med Sci Sports Exerc 36(3):498–503. doi:10.1249/01.MSS.0000117162.20314.6B

    Article  PubMed  Google Scholar 

  • Maughan RJ, Harmon M, Leiper JB, Sale D, Delman A (1986) Endurance capacity of untrained males and females in isometric and dynamic muscular contractions. Eur J Appl Physiol 55(4):395–400. doi:10.1007/BF00422739

    Article  CAS  Google Scholar 

  • Meyers MC, Laurent CM Jr, Higgins RW, Skelly WA (2007) Downhill ski injuries in children and adolescents. Sports Med 37(6):485–499. doi:10.2165/00007256-200737060-00003

    Article  PubMed  Google Scholar 

  • Miyashita M, Kanehisa H (1979) Dynamic peak torque related to age, sex, and performance. Res Q 50(2):249–255

    PubMed  CAS  Google Scholar 

  • Oertel G (1988) Morphometric analysis of normal skeletal muscles in infancy, childhood, and adolescence. An autopsy study. J Neurol Sci 88:303–313. doi:10.1016/0022-510X(88)90227-4

    Article  PubMed  CAS  Google Scholar 

  • Paraschos I, Hassani A, Bassa E, Hatzikotoulas K, Patikas D, Kotzamanidis C (2007) Fatigue differences between adults and prepubertal males. Int J Sports Med 28(11):958–963. doi:10.1055/s-2007-964984

    Article  PubMed  CAS  Google Scholar 

  • Pincivero DM, Gear WS, Sterner RL, Karunakara RG (2000) Gender differences in the relationship between quadriceps work and fatigue during high-intensity exercise. J Strength Cond Res 14:202–206. doi:10.1519/1533-4287(2000)014<0202:GDITRB>2.0.CO;2

    Article  Google Scholar 

  • Pincivero DM, Gandaio CM, Ito Y (2003) Gender-specific knee extensor torque, flexor torque, and muscle fatigue responses during maximal effort contractions. Eur J Appl Physiol 89(2):134–141. doi:10.1007/s00421-002-0739-5

    Article  PubMed  Google Scholar 

  • Ratel S, Bedu M, Hennegrave A, Doré E, Duché P (2002) Effects of age and recovery duration on peak power output during repeated cycling sprints. Int J Sports Med 23(6):397–402. doi:10.1055/s-2002-33737

    Article  PubMed  CAS  Google Scholar 

  • Ratel S, Duché P, Williams CA (2006) Muscle fatigue during high-intensity exercise in children. Sports Med 36(12):1031–1065. doi:10.2165/00007256-200636120-00004

    Article  PubMed  Google Scholar 

  • Reilly T, Drust B, Clarke N (2008) Muscle fatigue during football match-play. Sports Med 38(5):357–367. doi:10.2165/00007256-200838050-00001

    Article  PubMed  Google Scholar 

  • Russ DW, Kent-Braun JA (2003) Sex differences in human skeletal muscle fatigue are eliminated under ischemic conditions. J Appl Physiol 94(6):2414–2422

    PubMed  Google Scholar 

  • Russ DW, Lanza IR, Rothman D, Kent-Braun JA (2005) Sex differences in glycolysis during brief, intense isometric contractions. Muscle Nerve 32(5):647–655. doi:10.1002/mus.20396

    Article  PubMed  CAS  Google Scholar 

  • Russ DW, Towse TF, Wigmore DM, Lanza IR, Kent-Braun JA (2008) Contrasting influences of age and sex on muscle fatigue. Med Sci Sports Exerc 40(2):234–241. doi:10.1249/mss.0b013e31815bbb93

    Article  PubMed  Google Scholar 

  • Sadamoto T, Bonde-Petersen F, Suzuki Y (1983) Skeletal muscle tension, flow, pressure, and EMG during sustained isometric contractions in humans. Eur J Appl Physiol 51:395–408. doi:10.1007/BF00429076

    Article  CAS  Google Scholar 

  • Sejersted O, Hargens A, Kardel K, Blom P, Jensen O, Hermansen L (1984) Intramuscular fluid pressure during isometric contraction of human skeletal muscle. J Appl Physiol 56:287–295

    PubMed  CAS  Google Scholar 

  • Simoneau JA, Bouchard C (1989) Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J Physiol 257(4 Pt 1):E567–E572

    PubMed  CAS  Google Scholar 

  • Streckis V, Skurvydas A, Ratkevicius A (2007) Children are more susceptible to central fatigue than adults. Muscle Nerve 36(3):357–363. doi:10.1002/mus.20816

    Article  PubMed  Google Scholar 

  • Tanner JH, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and the stages of puberty. Arch Dis Child 51:170–179. doi:10.1136/adc.51.3.170

    Article  PubMed  CAS  Google Scholar 

  • Thompson BC, Fadia T, Pincivero DM, Scheuermann BW (2007) Forearm blood flow responses to fatiguing isometric contractions in women and men. Am J Physiol 293:H805–H812. doi:10.1152/ajpcell.00127.2007

    Article  CAS  Google Scholar 

  • Van Praagh E, Doré E (2002) Short-term muscle power during growth and maturation. Sports Med 32(11):701–728. doi:10.2165/00007256-200232110-00003

    Article  PubMed  Google Scholar 

  • Wretling ML, Henriksson-Larsén K (1998) Mechanical output and electromyographic parameters in males and females during fatiguing knee-extensions. Int J Sports Med 19(6):401–407. doi:10.1055/s-2007-971936

    Article  PubMed  CAS  Google Scholar 

  • Wüst RC, Morse CI, de Haan A, Jones DA, Degens H (2008) Sex differences in contractile properties and fatigue resistance of human skeletal muscle. Exp Physiol 93(7):843–850. doi:10.1113/expphysiol.2007.041764

    Article  PubMed  Google Scholar 

  • Yanagiya T, Kanehisa H, Kouzaki M, Kawakami Y, Fukunaga T (2003) Effect of gender on mechanical power output during repeated bouts of maximal running in trained teenagers. Int J Sports Med 24(4):304–310. doi:10.1055/s-2003-39508

    Article  PubMed  CAS  Google Scholar 

  • Yoon T, Schlinder Delap B, Griffith EE, Hunter SK (2007) Mechanisms of fatigue differ after low- and high-force fatiguing contractions in men and women. Muscle Nerve 36(4):515–524. doi:10.1002/mus.20844

    Article  PubMed  Google Scholar 

  • Zafeiridis A, Theou O, Manou V, Billis E, Dalamitros A, Kellis S (2004) Fatigue during high intensity intermittent “anaerobic” exercise in preteen, teen, and adult females [abstract]. Proceedings of the ninth annual congress European College of Sport Science; 2004 July 3–6; Clermont-Ferrand, p 351

  • Zafeiridis A, Dalamitros A, Dipla K, Manou V, Galanis N, Kellis S (2005) Recovery during high-intensity intermittent anaerobic exercise in boys, teens, and men. Med Sci Sports Exerc 37:505–512. doi:10.1249/01.MSS.0000155394.76722.01

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Zafeiridis.

Additional information

T. Tsirini and A. Zafeiridis contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dipla, K., Tsirini, T., Zafeiridis, A. et al. Fatigue resistance during high-intensity intermittent exercise from childhood to adulthood in males and females. Eur J Appl Physiol 106, 645–653 (2009). https://doi.org/10.1007/s00421-009-1058-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1058-x

Keywords

Navigation