Skip to main content

Advertisement

Log in

Aptahistochemistry in diagnostic pathology: technical scrutiny and feasibility

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Antibodies have been the workhorse for diagnostic immunohistochemistry to specifically interrogate the expression of certain protein to aid in histopathological diagnosis. This review introduces another dimension of histochemistry that employs aptamers as the core tool, the so-called aptahistochemistry. Aptamers are an emerging class of molecular recognition elements that could recapitulate the roles of antibodies. The many advantageous properties of aptamers suited for this diagnostic platform are scrutinized. An in-depth discussion on the technical aspects of aptahistochemistry is provided with close step-by-step comparison to the more familiarized immunohistochemical procedures, namely functionalization of the aptamer as a probe, antigen retrieval, optimization with emphasis on incubation parameters and visualization methods. This review offers rationales to overcome the anticipated challenges in transition from immunohistochemistry to aptahistochemistry, which is deemed feasible for an average diagnostic pathology laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahirwar R, Nahar S, Aggarwal S, Ramachandran S, Maiti S, Nahar P (2016a) In silico selection of an aptamer to oestrogen receptor alpha using computational docking employing estrogen response elements as aptamer-alike molecules. Sci Rep 6:21285. doi:10.1038/srep21285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahirwar R, Vellarikkal SK, Sett A, Sivasubbu S, Scaria V, Bora U, Borthakur BB, Kataki AC, Sharma JD, Nahar P (2016b) Aptamer-assisted detection of the altered expression of oestrogen receptor alpha in human breast cancer. PLoS One 11:e0153001. doi:10.1371/journal.pone.0153001

    Article  PubMed  PubMed Central  Google Scholar 

  • An S, Soe K, Akamatsu M, Hishikawa Y, Koji T (2012) Accelerated proliferation of hepatocytes in rats with iron overload after partial hepatectomy. Histochem Cell Biol 138:773–786. doi:10.1007/s00418-012-0994-4

    Article  CAS  PubMed  Google Scholar 

  • Balogh Z, Lautner G, Bardóczy V, Komorowska B, Gyurcsányi RE, Mészáros T (2010) Selection and versatile application of virus-specific aptamers. FASEB J 24:4187–4195. doi:10.1096/fj.09-144246

    Article  CAS  PubMed  Google Scholar 

  • Bauer M, Macdonald J, Henri J, Duan W, Shigdar S (2016) The Application of aptamers for immunohistochemistry. Nucl Acid Ther. 0, nat.2015.0569. doi:10.1089/nat.2015.0569

  • Bogen SA, Vani K, Sompuram SR (2009) Molecular mechanisms of antigen retrieval: antigen retrieval reverses steric interference caused by formalin-induced cross-links. Biotech Histochem 84:207–215. doi:10.3109/10520290903039078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, C., Chen, Y.H., Lennox, K.A., Behlke, M.A., Davidson, B.L., 2013. In vivo SELEX for identification of brain-penetrating aptamers. Mol Ther Nucl Acids 2:e67. doi:10.1038/mtna.2012.59

    Article  Google Scholar 

  • Citartan M, Gopinath SCB, Tominaga J, Tan S-C, Tang T-H (2012) Assays for aptamer-based platforms. Biosens Bioelectron 34:1–11. doi:10.1016/j.bios.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  • Citartan M, Gopinath SCB, Tominaga J, Tang T-H (2013) Label-free methods of reporting biomolecular interactions by optical biosensors. Analyst 138:3576–3592. doi:10.1039/c3an36828a

    Article  CAS  PubMed  Google Scholar 

  • Citartan M, Gopinath SCB, Tominaga J, Chen Y, Tang T-H (2014) Use of UV–vis–NIR spectroscopy to monitor label-free interaction between molecular recognition elements and erythropoietin on a gold-coated polycarbonate platform. Talanta 126:103–109. doi:10.1016/j.talanta.2014.03.043

    Article  CAS  PubMed  Google Scholar 

  • Citartan M, Ch’ng E-S, Rozhdestvensky TS, Tang T-H, (2016) Aptamers as the “capturing” agents in aptamer-based capture assays. Microchem J 128:187–197. doi:10.1016/j.microc.2016.04.019

    Article  CAS  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. doi:10.1038/346818a0

    Article  CAS  PubMed  Google Scholar 

  • Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, Flather D, Forbes A, Foreman T, Fowler C, Gawande B, Goss M, Gunn M, Gupta S, Halladay D, Heil J, Heilig J, Hicke B, Husar G, Janjic N, Jarvis T, Jennings S, Katilius E, Keeney TR, Kim N, Koch TH, Kraemer S, Kroiss L, Le N, Levine D, Lindsey W, Lollo B, Mayfield W, Mehan M, Mehler R, Nelson SK, Nelson M, Nieuwlandt D, Nikrad M, Ochsner U, Ostroff RM, Otis M, Parker T, Pietrasiewicz S, Resnicow DI, Rohloff J, Sanders G, Sattin S, Schneider D, Singer B, Stanton M, Sterkel A, Stewart A, Stratford S, Vaught JD, Vrkljan M, Walker JJ, Watrobka M, Waugh S, Weiss A, Wilcox SK, Wolfson A, Wolk SK, Zhang C, Zichi D (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. doi:10.1371/journal.pone.0015004

    Google Scholar 

  • González M, Argaraña CE, Fidelio GD (1999) Extremely high thermal stability of streptavidin and avidin upon biotin binding. Biomol Eng 16:67–72. doi:10.1016/S1050-3862(99)00041-8

    Article  PubMed  Google Scholar 

  • Gupta S, Thirstrup D, Jarvis TC, Schneider DJ, Wilcox SK, Carter J, Zhang C, Gelinas A, Weiss A, Janjic N, Baird GS (2011) Rapid histochemistry using slow off-rate modified aptamers with anionic competition. Appl Immunohistochem Mol Morphol. doi:10.1097/PAI.0b013e3182008c29

    PubMed  Google Scholar 

  • Hammond MEH, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS, Hayes M, Hicks DG, Lester S, Love R, Mangu PB, Mcshane L, Miller K, Osborne CK, Paik S, Perlmutter J, Rhodes A, Sasano H, Schwartz JN, Sweep, FCG, Taube S, Torlakovic EE, Valenstein P, Viale G, Visscher D, Wheeler T, Williams RB, Wittliff JL, Wolff AC (2010) American society of clinical oncology/college of American pathologists guideline recommendations for immunohistochemical testing of oestrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med. doi:10.1043/1543-2165-134.7.e48

    PubMed Central  Google Scholar 

  • He X, Chen J, Yie SM, Ye SR, Dong DD, Li K (2015) Using a sequence of oestrogen response elements as a DNA aptamer for oestrogen receptors. In Vitro Nucl Acid Ther 25:152–161. doi:10.1089/nat.2014.0521

    Article  CAS  Google Scholar 

  • Koji T (1999) In situ localization of gene-specific transcription regulatory factors by southwestern histochemistry. Acta Histochem Cytochem 32:255–260. doi:10.1267/ahc.32.255

    Article  CAS  Google Scholar 

  • Koji T, Nakane PK (1996) Recent advances in molecular histochemical techniques: in situ hybridization and southwestern histochemistry. J Electron Microsc (Tokyo) 45:119–127

    Article  CAS  Google Scholar 

  • Koji T, Yamada S, Kayashima K, Nakane PK (1992) A new approach to localize glucocorticoid receptor using DNA probe containing glucocorticoid responsive element DNA consensus sequences. Acta. Histochem Cytochem 25:681–687. doi:10.1267/ahc.25.681

    Article  CAS  Google Scholar 

  • Koji T, Komuta K, Nozawa M, Yamada S, Nakane PK (1994) Localization of cyclic adenosine 3′,5′-monophosphate-responsive element (CRE)-binding proteins by southwestern histochemistry. J Histochem Cytochem 42:1399–1405. doi:10.1177/42.10.7930523

    Article  CAS  PubMed  Google Scholar 

  • Komuta K, Kanematsu T, Nakane PK, Koji T (1998) Localization of epidermal growth factor receptor enhancer protein in A431 epidermoid carcinoma cells by southwestern histochemistry (recent progress in gene histochemistry). Acta. Histochem Cytochem 31:267–273

    Article  CAS  Google Scholar 

  • Lakhin AV, Tarantul VZ, Gening LV (2013) Aptamers: problems, solutions and prospects. Acta Nat 5:34–43

    CAS  Google Scholar 

  • Lazaridis T, Masunov A, Gandolfo F (2002) Contributions to the binding free energy of ligands to avidin and streptavidin. Proteins Struct Funct Genet 47:194–208. doi:10.1002/prot.10086

    Article  CAS  PubMed  Google Scholar 

  • Leong TY-M., Cooper K, Leong AS-Y (2010) Immunohistology—past, present, and future. Adv Anat Pathol 17:404–418. doi:10.1097/PAP.0b013e3181f8957c

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Chen Z (2014) Standardization of diagnostic immunohistochemistry: literature review and Geisinger experience. Arch Pathol Lab Med 138:1564–1577. doi:10.5858/arpa.2014-0074-RA

    Article  PubMed  Google Scholar 

  • Lin F, Liu H (2014) Immunohistochemistry in undifferentiated neoplasm/tumor of uncertain origin. Arch Pathol Lab Med 138:1584–1610. doi:10.5858/arpa.2014-0061-RA

    Google Scholar 

  • Liu Z, Lu Y, Pu Y, Liu J, Liu B, Yu B, Chen K, Fu T, Yang CJ, Liu H, Tan W (2015) Using aptamers to elucidate esophageal cancer clinical samples. Sci Rep 5:18516. doi:10.1038/srep18516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marimuthu C, Tang T-H, Tominaga J, Tan S-C, Gopinath SCB (2012) Single-stranded DNA (ssDNA) production in DNA aptamer generation. Analyst 137:1307–1315. doi:10.1039/c2an15905h

    Article  CAS  PubMed  Google Scholar 

  • Marttila AT, Laitinen OH, Airenne KJ, Kulik T, Bayer EA, Wilchek M, Kulomaa MS (2000) Recombinant NeutraLite Avidin: a non-glycosylated, acidic mutant of chicken avidin that exhibits high affinity for biotin and low non-specific binding properties. FEBS Lett 467:31–36. doi:10.1016/S0014-5793(00)01119-4

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Oguro A, Ohtsu T, Nakamura Y (2004) RNA aptamers selected against the receptor activator of NF-kappaB acquire general affinity to proteins of the tumor necrosis factor receptor family. Nucl Acids Res 32:6120–6128. doi:10.1093/nar/gkh949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moritz B, Wahle E (2014) Simple methods for the 3′ biotinylation of RNA. RNA 20:421–427. doi:10.1261/rna.042986.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prodeus A, Abdul-Wahid A, Fischer NW, Huang, E.H.-B., Cydzik M, Gariépy J (2015) Targeting the PD-1/PD-L1 immune evasion axis with DNA aptamers as a novel therapeutic strategy for the treatment of disseminated cancers. Mol Ther Nucl Acids 4:e237. doi:10.1038/mtna.2015.11

    Article  CAS  Google Scholar 

  • Pu Y, Zhu Z, Liu H, Zhang J, Liu J, Tan W (2010) Using aptamers to visualize and capture cancer cells. Anal Bioanal Chem 397:3225–3233. doi:10.1007/s00216-010-3715-7

    Article  CAS  PubMed  Google Scholar 

  • Pu Y, Liu Z, Lu Y, Yuan P, Liu J, Yu B, Wang G, Yang CJ, Liu H, Tan W (2015) Using DNA aptamer probe for immunostaining of cancer frozen tissues. Anal Chem 87:1919–1924. doi:10.1021/ac504175h

    Article  CAS  PubMed  Google Scholar 

  • Rait VK, O’Leary TJ, Mason JT (2004) Modeling formalin fixation and antigen retrieval with bovine pancreatic ribonuclease A: I-structural and functional alterations. Lab Invest 84:292–299. doi:10.1038/labinvest.3700045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scicchitano MS, Dalmas DA, Boyce RW, Thomas HC, Frazier KS (2009) Protein extraction of formalin-fixed, paraffin-embedded tissue enables robust proteomic profiles by mass spectrometry. J Histochem Cytochem 57:849–860. doi:10.1369/jhc.2009.953497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shangguan D, Bing T, Zhang N (2015) Cell-SELEX: aptamer selection against whole cells. In: Aptamers selected by cell-SELEX for Theranostics. Springer, Berlin, pp 13–33. doi:10.1007/978-3-662-46226-3_2

    Google Scholar 

  • Shi SR, Cote RJ, Taylor CR (2001) Antigen retrieval techniques: current perspectives. J Histochem Cytochem 49:931–937

    Article  CAS  PubMed  Google Scholar 

  • Shigdar S, Lin J, Yu Y, Pastuovic M, Wei M, Duan W (2011) RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci 102:991–998. doi:10.1111/j.1349-7006.2011.01897.x

    Article  CAS  PubMed  Google Scholar 

  • Shigdar S, Qian C, Lv L, Pu C, Li Y, Li L, Marappan M, Lin J, Wang L, Duan W (2013) The use of sensitive chemical antibodies for diagnosis: detection of low levels of Epcam in breast cancer. PLoS One. doi:10.1371/journal.pone.0057613

    PubMed  PubMed Central  Google Scholar 

  • Shin M, Hishikawa Y, Izumi S, Koji T (2002) Southwestern histochemistry as a molecular histochemical tool for analysis of expression of transcription factors: application to paraffin-embedded tissue sections. Med Electron Microsc 35:217–224. doi:10.1007/s007950200025

    Article  CAS  PubMed  Google Scholar 

  • Sompuram SR, Vani K, Bogen SA (2006a) A molecular model of antigen retrieval using a peptide array. Am J Clin Pathol 125:91–98. doi:10.1309/DCEQD30V5UEJA5GN

  • Sompuram SR, Vani K, Hafer LJ, Bogen SA (2006b) Antibodies immunoreactive with formalin-fixed tissue antigens recognize linear protein epitopes. Am J Clin Pathol 125:82–90. doi:10.1309/6H0A-RQF7-K3Y6-08EH

    Article  CAS  PubMed  Google Scholar 

  • Stanlis KK, McIntosh JR (2003) Single-strand DNA aptamers as probes for protein localization in cells. J Histochem Cytochem 51:797–808. doi:10.1177/002215540305100611

    Article  CAS  PubMed  Google Scholar 

  • Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX-A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403. doi:10.1016/j.bioeng.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Zu Y (2015) Aptamers and their applications in nanomedicine. Small 11:2352–2364. doi:10.1002/smll.201403073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiviyanathan V, Gorenstein DG (2012) Aptamers and the next generation of diagnostic reagents. Proteomics Clin Appl 6:563–573. doi:10.1002/prca.201200042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toh SY, Citartan M, Gopinath, S.C.B., Tang T-H (2015) Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 64:392–403. doi:10.1016/j.bios.2014.09.026

    Article  CAS  PubMed  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment—RNA ligands to bacteriophage-T4 DNA-polymerase. Science 249:505–510. doi:10.1126/science.2200121

    Article  CAS  PubMed  Google Scholar 

  • Walker JJ, Brody EN, Gold L (2012) Slow off-rate modified aptamer arrays for biomarker discovery and diagnostic applications. In: Microarrays in diagnostics and biomarker development. Springer, Berlin, pp 113–131. doi:10.1007/978-3-642-28203-4_8

    Chapter  Google Scholar 

  • Zeng Z, Zhang P, Zhao N, Sheehan AM, Tung C-H, Chang C-C, Zu Y (2010) Using oligonucleotide aptamer probes for immunostaining of formalin-fixed and paraffin-embedded tissues. Mod Pathol 23:1553–1558. doi:10.1038/modpathol.2010.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L (2015) Unnatural nucleic acids for aptamer selection. In: Aptamers selected by cell-SELEX for theranostics. Springer, Berlin, pp 35–65. doi:10.1007/978-3-662-46226-3_3

    Google Scholar 

Download references

Acknowledgements

M. Citartan, E-S Ch’ng and TH Tang were supported by an FRGS grant (203/CIPPT/6711441), an E-science grant (305/CIPPT/613235) and a University Science Malaysia Research University Grant (1001.CIPPT.811317), respectively. TS Rozhdestvensky was supported by a Germany National Genome Research Network (grant #NGFNIII 01GS0808).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ewe Seng Ch’ng or Thean-Hock Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukari, B.A., Citartan, M., Ch’ng, E. et al. Aptahistochemistry in diagnostic pathology: technical scrutiny and feasibility. Histochem Cell Biol 147, 545–553 (2017). https://doi.org/10.1007/s00418-017-1561-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-017-1561-9

Keywords

Navigation