Skip to main content

Advertisement

Log in

Gender dimorphism influences extracellular matrix expression and regeneration of muscular tissue in mdx dystrophic mice

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Mdx mouse, the animal model of Duchenne muscular dystrophy, lacks dystrophin and develops an X-linked recessive inflammatory myopathy characterized by degeneration of skeletal muscle fibers and connective tissue replacement. The present work aimed to assess whether gender dimorphism in mdx mice would influence skeletal muscle pathology at ages corresponding to main histological changes in the microenvironment of muscular tissue: myonecrosis, regeneration, and fibrosis. At the height of myonecrosis (6 weeks postnatal), skeletal muscles of male mdx mice showed increased sarcolemmal permeability, numerous inflammatory foci, and marked deposition of the extracellular matrix components (ECM) type I collagen and laminin. In contrast, age-matched mdx females showed mild ECM deposition, discrete myonecrosis, but increased numbers of regenerating fibers expressing the satellite cell marker NCAM. In contrast ovariectomized mdx females showed decreased numbers of regenerating fibers. Older (24 and 48 weeks postnatal) mdx females showed extensive fibrosis with increased sarcolemmal permeability and marked deposition of ECM components than corresponding males. These results suggest a role for female hormones in the control of myonecrosis probably by promoting regeneration of muscular tissue and mitigating inflammation especially at ages under the critical influence of sex hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–F
Fig. 2A–C
Fig. 3A–D
Fig. 4A–E
Fig. 5A–E

Similar content being viewed by others

References

  • Amelink GJ, Kamp HH, Bär PR (1988) Creatine kinase isoenzyme profiles after exercise in the rat: sex-linked differences in leakage of CK-MM. Pflugers Arch Eur J Physiol 412:417–421

    CAS  Google Scholar 

  • Amelink GJ, Koot RW, Erich WB, Van Gijn J, Bar PR (1990) Sex-linked variation in creatine kinase release, and its dependence on oestradiol, can be demonstrated in an in-vitro rat skeletal muscle preparation. Acta Physiol Scand 138:115–124

    CAS  PubMed  Google Scholar 

  • Amemiya K, Semino-Mora C, Granger RP, Dalakas MC (2000) Downregulation of TGF-b1 mRNA and protein in the muscles of patients with inflammatory myopathies after treatment with high-dose intravenous immunoglobulin. Clin Immunol 94:99–104

    Article  CAS  PubMed  Google Scholar 

  • Asakura A (2003) Stem cells in adult skeletal muscle. Trends Cardiovasc Med 13:123–128

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft GS, Dodsworth J, Boxtel EV, Tarnuzzer RW, Horan MA, Schultz GS, Ferguson MWJ (1997) Estrogen accelerates cutaneous wound healing associated with an increase in TGF-b1. Nat Med 3:1209–1215

    Article  CAS  PubMed  Google Scholar 

  • Bar PR, Amelink GJ (1997) Protection against muscle damage exerted by oestrogen: hormonal or antioxidant action? Biochem Soc Trans 25:50–54

    CAS  PubMed  Google Scholar 

  • Bernasconi P, Torchiana E, Confalonieri P, Brugnoni R, Barresi R, Mora M, Cornelio F, Morandi L, Mantegazza R (1995) Expression of transforming growth factor-beta 1 in dystrophic patient muscles correlates with fibrosis. Pathogenetic role of a fibrogenic cytokine. J Clin Invest 96:1137–1144

    CAS  PubMed  Google Scholar 

  • Bulfield G, Siller WG, Wight PAL, Moore KJ (1984) X-chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A 81:1189–1992

    CAS  PubMed  Google Scholar 

  • Carlson CG (1998) The dystrophinopathies: an alternative to structural hypothesis. Neurobiol Dis 5:3–15

    Article  CAS  PubMed  Google Scholar 

  • Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  CAS  PubMed  Google Scholar 

  • Cohen L, Morgan J (1976) Diethylstilbestrol effects on serum enzymes and isozymes in muscular dystrophy. Arch Neurol 33:480–484

    CAS  PubMed  Google Scholar 

  • Cohen L, Morgan J, Schulman S (1972) Diethylstilbestrol: observations on its use in Duchenne’s muscular dystrophy (DMD). Proc Soc Exp Biol Med 140:830–835

    CAS  PubMed  Google Scholar 

  • Crameri RM, Langberg H, Magnusson P, Jensen CH, Daa Schroder H, Olesen JL, Suetta C, Teisner B, Kjaer M (2004) Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise. J Physiol jphysiol.2004.061846

  • Ehmsen J, Poon E, Davies K (2002) The dystrophin-associated protein complex. J Cell Sci 115:2801–2803

    CAS  PubMed  Google Scholar 

  • Engvall E, Wewer UM (2003) The new frontier in muscular dystrophy research: booster genes. FASEB J 17:1579–1584

    Article  CAS  PubMed  Google Scholar 

  • Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP (1990) Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345:315–319

    Article  CAS  PubMed  Google Scholar 

  • Foster RF, Thompson JM, Kaufman SJ (1987) A laminin substrate promotes myogenesis in rat skeletal muscle cultures: analysis of replication and development using anti-desmin monoclonal antibodies. Dev Biol 122:11–20

    CAS  PubMed  Google Scholar 

  • Galea E, Santizo R, Feinstein DL, Adamsom P, Greenwood J, Koenig HM, Pelligrino DA (2002) Estrogen inhibits NF kappa B-dependent inflammation in brain endothelium without interfering with I kappa B degradation. Neuroreport 13:1469–1472

    Article  CAS  PubMed  Google Scholar 

  • Grounds MD (1991) Towards understanding skeletal muscle regeneration. Pathol Res Pract 187:1–22

    CAS  PubMed  Google Scholar 

  • Hamer PW, McGeachie JM, Davies MJ, Grounds MD (2002) Evans Blue dye as an in vivo marker of myofibre damage: optimising parameters for detecting initial myofibre membrane permeability. J Anat 200:69–79

    Article  CAS  PubMed  Google Scholar 

  • Infante JP, Huszagh VA (1999) Mechanisms of resistance to pathogenesis in muscular dystrophies. Mol Cell Biochem 195:155–167

    Article  CAS  PubMed  Google Scholar 

  • Johnson BJ, Halstead N, White ME, Hathaway MR, Dicostanzo A, Dayton WR (1998) Activation state of muscle stellate cells isolated from steers implanted with a combined trenbolone acetate and estradiol implant. J Anim Sci 76:2779–2786

    CAS  PubMed  Google Scholar 

  • Kahlert S, Grohe C, Karas RH, Lobbert K, Neyses L, Vetter H (1997) Effects of estrogen on skeletal myoblast growth. Biochem Biophys Res Commun 232:373–378

    Article  CAS  PubMed  Google Scholar 

  • Komulainen J, Koskinen SOA, Kalliokoski R, Takala TES (1999) Gender differences in skeletal muscle fibre damage after eccentrically biased downhill running in rats. Acta Physiol Scand 165:57–63

    Article  CAS  PubMed  Google Scholar 

  • Kurek JB, Nouri S, Kannourakis G, Murphy M, Austin L (1996) Leukemia inhibitory factor and interleukin-6 are produced by diseased and regenerating skeletal muscle. Muscle Nerve 19:1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Lagrota-Cândido J, Canella I, Savino W, Quirico-Santos T (1999) Expression of extracellular matrix ligands and receptors in the muscular tissue and draining lymph nodes of mdx dystrophic mice. Clin Immunol 93:143–151

    Article  PubMed  Google Scholar 

  • Lagrota-Cândido J, Vasconcellos R, Cavalcanti M, Bozza M, Savino WQ, Quirico-Santos T (2002) Resolution of skeletal muscle inflammation in mdx dystrophic mouse is accompanied by increased immunoglobulin and interferon-g production. Int J Exp Pathol 83:121–132

    Article  PubMed  Google Scholar 

  • Larionov AA, Vasyliev DA, Mason JI, Howie AF, Berstein LM, Miller WR (2003) Aromatase in skeletal muscle. J Steroid Biochem Mol Biol 84:485–492

    Article  CAS  PubMed  Google Scholar 

  • Lefaucher JP, Sebille A (1996) Features of dystrophy in smooth and skeletal muscles of mdx mice. Muscle Nerve 19:793–794

    PubMed  Google Scholar 

  • Ling E, Robinson DS (2002) Transforming growth factor-beta1: its anti-inflammatory and pro-fibrotic effects. Clin Exp Allergy 32:175–178

    Article  CAS  PubMed  Google Scholar 

  • Ma K, Mallidis C, Bhasin S, Mahabadi V, Artaza J, Gonzalez-Cadavid N, Arias J, Salehian B (2003) Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 285:E363–E371

    CAS  PubMed  Google Scholar 

  • McCormick KM, Burns KL, Piccone CM, Gosselin LE, Brazeau GA (2004) Effects of ovariectomy and estrogen on skeletal muscle function in growing rats. J Muscle Res Cell Motil 25:21–27

    Article  CAS  PubMed  Google Scholar 

  • McGeachie JK, Grounds MD (1999) The timing between skeletal muscle myoblast replication and fusion into myotubes, and the stability of regenerated dystrophic myofibres: an autoradiographic study in mdx mice. J Anat 194:287–295

    Article  PubMed  Google Scholar 

  • Mehler MF (2000) Brain dystrophin, neurogenetics and mental retardation. Brain Res Rev 32:277–307

    Article  CAS  PubMed  Google Scholar 

  • Michele DE, Campbell KP (2003) Dystrophin-glycoprotein complex: post-translational processing and dystroglycan function. J Biol Chem 278:15457–15460

    Article  CAS  PubMed  Google Scholar 

  • Mundegar RR, von Oertzen J, Zierz S (1995) Increased laminin A expression in regenerating myofibres in neuromuscular disorders. Muscle Nerve 18:992–999

    CAS  PubMed  Google Scholar 

  • Paroo Z, Dipchand ES, Noble EG (2002) Estrogen attenuates postexercise HSP70 expression in skeletal muscle. Am J Physiol Cell Physiol 282:C245–C251

    CAS  PubMed  Google Scholar 

  • Patton BL, Connoll AM, Martin PT, Cunningham JM, Mehta S, Pestronk A, Miner JH, Sanes JR (1999) Distribution of ten laminin chains in dystrophic and regenerating muscles. Neuromuscul Disord 9:423–433

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz-Weiss P, Tomek RJ, Mathew J, Eghbali M (1994) Gender-specific differences in expression of mRNAs for functional and structural proteins in rat ventricular myocardium. J Mol Cell Cardiol 26:261–270

    Article  CAS  PubMed  Google Scholar 

  • Santen RJ (2003) Inhibition of aromatase: insights from recent studies. Steroids 68:559–567

    Article  CAS  PubMed  Google Scholar 

  • Schneider BS, Sannes HJ (2001) Consequences of skeletal muscle injury induced by unaccustomed exercise. Orthop Nurs 20:49–56

    CAS  Google Scholar 

  • Schneider BSP, Correia LA, Cannon JG (1999) Sex differences in leukocyte invasion in injured murine skeletal muscle. Res Nurs Health 22:243–251

    Article  PubMed  Google Scholar 

  • Schuler F, Sorokin LM (1995) Expression of laminin isoforms in mouse myogenic cells in vitro and in vivo. J Cell Sci 108:3795–3805

    CAS  PubMed  Google Scholar 

  • Seixas SIL, Wajsenzon IJ, Savino W, Quirico-Santos T (1994) Altered deposition of extracellular matrix components in the skeletal muscle and lymph node of the mdx dystrophic mouse. Braz J Med Biol Res 27:2229–2240

    CAS  PubMed  Google Scholar 

  • Snochowski M, Dahlberg E, Gustafsson JA (1980) Characterization and quantification of the androgen and glucocorticoid receptors in cytosol from rat skeletal muscle. Eur J Biochem 111:603–616

    CAS  PubMed  Google Scholar 

  • Straub V, Rafael JA, Chamberlain JS, Campbell KP (1997) Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J Cell Biol 139:375–385

    Article  CAS  PubMed  Google Scholar 

  • Tiidus PM (2000) Estrogen and gender effects on muscle damage, inflammation, and oxidative stress. Can J Appl Physiol 25:274–287

    CAS  PubMed  Google Scholar 

  • Tiidus PM (2001) Oestrogen and sex influence on muscle damage and inflammation: evidence from animal models. Curr Opin Clin Nutr Metab Care 4:509–513

    Article  CAS  PubMed  Google Scholar 

  • Tiidus PM, Holden D, Bombardier E, Zajchowski S, Enns D, Belcastro A (2001) Estrogen effect on post-exercise skeletal muscle neutrophil infiltration and calpain activity. Can J Physiol Pharmacol 79:400–406

    Article  CAS  PubMed  Google Scholar 

  • Torrente Y, Tremblay JP, Pisati F, Belicchi M, Rossi B, Sironi M, Fortunato F, El Fahime M, D’Angelo MG, Caron NJ, Constantin G, Paulin D, Scarlato G, Bresolin N (2001) Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stem cells restores dystrophin in mdx mice. J Cell Biol 152:335–348

    Article  CAS  PubMed  Google Scholar 

  • Valentine BA, Cooper BJ, de Lahunta A, O’Quinn R, Blue JT (1988) Canine X-linked muscular dystrophy. An animal model of Duchenne muscular dystrophy: clinical studies. J Neurol Sci 88:69–81

    Article  CAS  PubMed  Google Scholar 

  • Verthelyi D (2001) Sex hormones as immunomodulators in health and disease. Intern Immunopharmacol 1:983–993

    Article  CAS  Google Scholar 

  • Wehling M, Spencer MJ, Tidball JG (2001) A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol 155:123–131

    Article  CAS  PubMed  Google Scholar 

  • Wise PM, Dubal DB (2000) Estradiol protects against ischemic brain injury in middle-aged rats. Biol Reprod 63:982–985

    CAS  PubMed  Google Scholar 

  • Yamazaki M, Minota S, Sakurai H, Miyazono K, Yamada A, Kanazawa I, Kawai M (1994) Expression of transforming growth factor-beta 1 and its relation to endomysial fibrosis in progressive muscular dystrophy. Am J Pathol 144:221–226

    CAS  PubMed  Google Scholar 

  • Yao CC, Ziober BL, Sutherland AE, Mendrick DL, Kramer RH (1996) Laminins promote the locomotion of skeletal myoblasts via the alpha 7 integrin receptor. J Cell Sci 109:3139–3150

    CAS  PubMed  Google Scholar 

  • Zhai P, Eurell TE, Cotthaus R, Jeffery EH, Bahr JM, Gross DR (2000) Effect of estrogen on global myocardial ischemia-reperfusion injury in female rats. Am J Physiol Heart Circ Physiol 279:H2766–H2775

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Nina M. Cortes and Bartira D. Oliveira for excellent technical assistance and to Dr. Edna Nanami Yamasaki for critical reading of the manuscript. This work received financial support from Program of Neuroimmunology (CAPES) and Faperj.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jussara Lagrota-Candido.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salimena, M.C., Lagrota-Candido, J. & Quírico-Santos, T. Gender dimorphism influences extracellular matrix expression and regeneration of muscular tissue in mdx dystrophic mice. Histochem Cell Biol 122, 435–444 (2000). https://doi.org/10.1007/s00418-004-0707-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0707-8

Keywords

Navigation