Skip to main content

Advertisement

Log in

Hyalocyte proliferation and ECM accumulation modulated by bFGF and TGF-β1

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

In cases of severe retinal diseases, the vitreous body has to be removed and replaced by a suitable biomaterial. Currently, however, no satisfying long-term vitreous substitute is in clinical use. A novel therapeutic concept represents the combination of hyalocytes with suitable biomaterials. The goal of the present study was to evaluate the potential of bFGF and TGF-β1 as tools to control hyalocyte proliferation and the accumulation of extracellular matrix (ECM).

Methods

In vitro investigation on the influence of different concentrations of bFGF and TGF-β1 on hyalocyte morphology, proliferation and ECM production.

Results

Both growth factors affected hyalocyte morphology; small, round cells could be observed after bFGF supplementation, whereas the cells appeared more completely spread when cultured with TGF-β1. Hyalocyte proliferation was increased 3-fold by 10 ng/ml bFGF; 1 ng/ml TGF-β1 in contrast reduced cell proliferation to about 40% of the control. Converse effects of the growth factors could also be observed on the ECM accumulation of hyalocytes; whereas bFGF halved ECM accumulation, TGF-β1 enhanced the ECM production up to 3-fold. Precultivation of hyalocytes with bFGF for two passages had no influence on their subsequent accumulation of glycosaminoglycans (GAG). However, cells precultivated with bFGF exhibited a doubled accumulation of collagen compared to controls.

Conclusions

The observed opposite effects of bFGF and TGF-β1 on hyalocyte proliferation and ECM accumulation may allow for the control of hyaloycte properties. Therefore, these two growth factors seem to be valuable tools towards the development of a cell-based vitreous substitute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bishop PN (2000) Structural macromolecules and supramolecular organisation of the vitreous gel. Prog Retin Eye Res 19:323–344

    Article  PubMed  CAS  Google Scholar 

  2. Bishop PN, Takanosu M, Le Goff M, Mayne R (2002) The role of the posterior ciliary body in the biosynthesis of vitreous humour. Eye 16:454–460

    Article  PubMed  CAS  Google Scholar 

  3. Sebag J (1989) The vitreous. Springer, New York

    Google Scholar 

  4. Henle J (1841) Lehre von den Mischungs- und Formbestandtheilen des menschlichen Körpers, vom Baue des menschlichen Körpers. Vos, Leipzig

    Google Scholar 

  5. Bloom GD, Balazs EA (1965) An electron microscopic study of hyalocytes. Exp Eye Res 4:249–255

    Article  PubMed  CAS  Google Scholar 

  6. Freeman MI, Jacobson B, Balazs EA (1978) The chemical composition of vitreous hyalocytes granules. Exp Eye Res 29:479–484

    Article  Google Scholar 

  7. Gloor BP (1973) Development of the vitreous body and zonula. Graefes Arch Clin Exp Ophthalmol 187:21–44

    Article  CAS  Google Scholar 

  8. Gloor BP (1978) Radioisotopes for research into vitreous and zonule. Adv Ophthalmol 36:63–73

    PubMed  CAS  Google Scholar 

  9. Salu P, Claeskens W, De Wilde A, Hijmans W, Wisse E (1985) Light and electron microscopic studies of the rat hyalocyte after perfusion fixation. Ophthalmic Res 17:125–130

    PubMed  CAS  Google Scholar 

  10. Qiao H, Hisatomi T, Sonoda KH, Kura S, Sassa Y, Kinoshita S, Nakamura T, Sakamoto T, Ishibashi T (2005) The characterisation of hyalocytes: the origin, phenotype, and turnover. Br J Ophthalmol 89:513–517

    Article  PubMed  CAS  Google Scholar 

  11. Lazarus HS, Hageman GS (1994) In situ characterization of the human hyalocyte. Arch Ophthalmol 122:1356–1362

    Google Scholar 

  12. Lutty GA, Merges C, Threlkeld AB, Crone S, McLeod DS (1993) Heterogeneity in localization of isoforms of TGF-beta in human retina, vitreous, and choroid. Invest Ophthalmol Vis Sci 34:477–487

    PubMed  CAS  Google Scholar 

  13. Boltz-Nitulescu G, Grabner G, Forster O (1979) Macrophage-like properties of human hyalocytes. Adv Exp Med Bio 121B:223–228

    CAS  Google Scholar 

  14. Noda Y, Hata Y, Hisatomi T, Nakamura Y, Hirayama K, Miura M, Nakao S, Fujisawa K, Sakamoto T, Ishibashi T (2004) Functional properties of hyalocytes under PDGF-rich conditions. Invest Ophthalmol Vis Sci 45:2107–2114

    Article  PubMed  Google Scholar 

  15. Zhu M, Penfold PL, Madigan MC, Billson FA (1997) Effect of human vitreous and hyalocyte-derived factors on vascular endothelial cell growth. Aust N Z J Ophthalmol 25:57–60

    Article  Google Scholar 

  16. Badrinath SS, Gopal L, Sharma T, Parikh S, Shanmugam MP, Bhende P, Biswas J (1999) Vitreoschisis in Eales’ disease: pathogenic role and significance in surgery. Retina 19:51–54

    Article  PubMed  CAS  Google Scholar 

  17. Heidenkummer HP, Kampik A (1996) Morphologic analysis of epiretinal membranes in surgically treated idiopathic macular foramina. Results of light and electron microscopy. Der Ophthalmologe 93:675–679

    Article  PubMed  CAS  Google Scholar 

  18. Kobuch K, Wild B, Eckert E, Fischbach C, Gabel VP (2002) Invest Ophthalmol Vis Sci 43: ARVO E-Abstract 3495

  19. Sommer F, Kobuch K, Brandl F, Wild B, Weiser B, Gabel VP, Blunk T, Göpferich A (2007) Ascorbic acid modulates proliferation and ascorbic acid accumulation of hyalocytes. Tissue Eng 13:1281–1289

    Article  PubMed  CAS  Google Scholar 

  20. D’Amico DJ (1994) Diseases of the Retina. N Engl J Med 331:95–106

    Article  PubMed  CAS  Google Scholar 

  21. Frank RN (2004) Diabetic Retinopathy. N Engl J Med 350:48–58

    Article  PubMed  CAS  Google Scholar 

  22. Soman N, Banerjee R (2003) Artificial vitreous replacements. Biomed Mater Eng 13:59–74

    PubMed  CAS  Google Scholar 

  23. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  PubMed  CAS  Google Scholar 

  24. Sommer F, Brandl F, Göpferich A (2006) Ocular tissue engineering. Adv Exp Med Biol 585:413–429

    Article  PubMed  CAS  Google Scholar 

  25. Benavente CA, Sierralta WD, Conget PA, Minguell JJ (2003) Subcellular distribution and mitogenic effect of basic fibroblast growth factor in mesenchymal uncommitted stem cells. Growth Factors 21:87–94

    Article  PubMed  CAS  Google Scholar 

  26. Berrada S, Lefebvre F, Harmand MF (1995) The effect of recombinant human basic fibroblast growth factor (rhFGF-2) on human osteoblast in growth and phenotype expression. Dev Biol 31:698–702

    Article  CAS  Google Scholar 

  27. Hauner H, Roehrig K, Petruschke T (1995) Effects of epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) on human adipocyte development and function. Eur J Clin Invest 25:90–96

    Article  PubMed  CAS  Google Scholar 

  28. Cuevas P, Burgos J, Baird A (1988) Basic fibroblast growth factor (FGF) promotes cartilage repair in vivo. Biochem Biophys Res Co 156:611–618

    Article  CAS  Google Scholar 

  29. Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R (1997) Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 138:4456–4462

    Article  PubMed  CAS  Google Scholar 

  30. Martin I, Vunjak-Novakovic G, Yang J, Langer R, Freed LE (1999) Mammalian chondrocytes expanded in the presence of fibroblast growth factor 2 maintain the ability to differentiate and regenerate three- dimensional cartilaginous tissue. Exp Cell Res 253:681–688

    Article  PubMed  CAS  Google Scholar 

  31. Martin I, Suetterlin R, Baschong W, Heberer M, Vunjak-Novakovic G, Freed LE (2001) Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation. J Cell Biochem 83:121–128

    Article  PubMed  CAS  Google Scholar 

  32. Tsutsumi S, Shimazu A, Miyazaki K, Pan H, Koike C, Yoshida E, Takagishi K, Kato Y (2001) Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Co 288:413–419

    Article  CAS  Google Scholar 

  33. Attisano L, Wrana JL, Lopez-Casillas F, Massague J (1994) TGF-beta receptors and actions. Biochim Biophys Acta 1222:71–80

    Article  PubMed  CAS  Google Scholar 

  34. Massague J (1990) The transforming growth factor-beta family. Ann Rev Cell Biol 6:597–641

    Article  PubMed  CAS  Google Scholar 

  35. Assoian RK, Fleurdelys BE, Stevenson HC, Miller PH, Madtes DK, Raines EW, Ross R, Sporn MB (1987) Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc Natl Acad Sci USA 84:6020–6024

    Article  PubMed  CAS  Google Scholar 

  36. Cross M, Dexter T (1991) Growth factors in development, transformation, and tumorigenesis. Cell 64:271–280

    Article  PubMed  CAS  Google Scholar 

  37. Kay EP, Lee MS, Seong GJ, Lee YG (1998) TGF-beta stimulates cell proliferation via an autocrine production of FGF-2 in corneal stromal fibroblasts. Curr Eye Res 17:286–293

    Article  PubMed  CAS  Google Scholar 

  38. Song QH, Klepeis VE, Nugent MA, Trinkaus-Randall V (2002) TGF-b1 regulates TGF-b1 and FGF-2 mRNA expression during fibroblast wound healing. Mol Pathol 55:164–176

    Article  PubMed  CAS  Google Scholar 

  39. Pangborn CA, Athanasiou KA (2005) Effects of growth factors on meniscal fibrochondrocytes. Tissue Eng 11:1141–1148

    Article  PubMed  CAS  Google Scholar 

  40. Lieb E, Milz S, Vogel T, Hacker M, Dauner M, Schulz MB (2004) Effects of transforming growth factor beta1 on bonelike tissue formation in three-dimensional cell culture. I. Culture conditions and tissue formation. Tissue Eng 10:1399–1413

    PubMed  CAS  Google Scholar 

  41. Kee NW, Leong DTW, Hutmacher DW (2002) The challenge to measure cell proliferation in two and three dimensions. Tissue Eng 11:182–191

    Google Scholar 

  42. Kim YJ, Sah RLY, Doong JY, Grodzinsky AJ (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem 174:168–176

    Article  PubMed  CAS  Google Scholar 

  43. McGowan KB, Kurtis MS, Lottman LM, Watson D, Sah RL (2002) Biochemical quantification of DNA in human articular and septal cartilage using PicoGreen® and Hoechst 33258. Osteoarthritis Cartilage 10:580–587

    Article  PubMed  CAS  Google Scholar 

  44. Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883:173–177

    PubMed  CAS  Google Scholar 

  45. Taylor KB, Jeffree GM (1969) A new basic metachromatic dye, 1,9-dimethyl methylene blue. Histochem J 1:199–204

    Article  PubMed  CAS  Google Scholar 

  46. Woessner JF (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 93:440–447

    Article  PubMed  CAS  Google Scholar 

  47. Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mat Sci Eng R 36:143–206

    Article  Google Scholar 

  48. Dickson C, Webster DR, Johnson H, Cecilia Millena A, Khan SA (2002) Transforming growth factor-beta effects on morphology of immature rat Leydig cells. Mol Cell Endocrinol 195:65–77

    Article  PubMed  CAS  Google Scholar 

  49. Stevens MM, Marini RP, Martin I, Langer R, Prasad SV (2004) FGF-2 enhances TGF-b1-induced periosteal chondrogenesis. J Orthop Res 22:1114–1119

    Article  PubMed  CAS  Google Scholar 

  50. Pickering JG, Uniyal S, Ford CM, Chau T, Laurin MA, Chow LH, Ellis CG, Fish J, Chan BM (1997) Fibroblast growth factor-2 potentiates vascular smooth muscle cell migration to platelet-derived growth factor: upregulation of alpha2beta1 integrin and disassembly of actin filaments. Circ Res 80:627–637

    PubMed  CAS  Google Scholar 

  51. Wroblewski J, Edwall-Arvidsson C (1995) Inhibitory effects of basic fibroblast growth factor on chondrocyte differentiation. J Bone Miner Res 10:735–742

    Article  PubMed  CAS  Google Scholar 

  52. Borge L, Lemare F, Demignot S, Adolphe M (1997) Restoration of the differentiated functions of serially passaged chondrocytes using staurosporine. In Vitro Cell Dev Biol Anim 33:703–709

    Article  PubMed  CAS  Google Scholar 

  53. Brown PD, Benya PD (1988) Alterations in chondrocyte cytoskeletal architecture during phenotypic modulation by retinoic acid and dihydrocytochalasin B-induced reexpression. J Cell Biol 106:171–179

    Article  PubMed  CAS  Google Scholar 

  54. Zanetti NC, Solursh M (1984) Induction of chondrogenesis in limb mesenchymal cultures by disruption of the actin cytoskeleton. J Cell Biol 99:115–123

    Article  PubMed  CAS  Google Scholar 

  55. Sakamoto T (2003) Cell biology of hyalocytes. Nippon Ganka Gakkai Zasshi 107:866–882

    PubMed  CAS  Google Scholar 

  56. Neubauer M, Hacker M, Bauer-Kreisel P, Weiser B, Fischbach C, Schulz MB, Göpferich A, Blunk T (2005) Adipose tissue engineering based on mesenchymal stem cells and basic fibroblast growth factor in vitro. Tissue Eng 11:1840–1851

    Article  PubMed  CAS  Google Scholar 

  57. Spraul CW, Kaven C, Lang GK, Lang GE (2004) Effect of growth factors on bovine retinal pigment epithelial cell migration and proliferation. Ophthalmic Res 36:166–171

    Article  PubMed  CAS  Google Scholar 

  58. Osterlin SE, Jacobson B (1968) The synthesis of hyaluronic acid in vitreous. II. The presence of soluble transferase and nucleotide sugar in the accellular vitreous gel. Exp Eye Res 7:511–523

    Article  PubMed  CAS  Google Scholar 

  59. Newsome DA, Linsenmayer TF, Trelstad RL (1976) Vitreous body collagen. Evidence for a dual origin from the neural retina and hyalocytes. J Cell Biol 71:59–67

    Article  PubMed  CAS  Google Scholar 

  60. Inoue H, Kato Y, Iwamoto M, Hiraki Y, Sakuda M, Suzuki F (1989) Stimulation of cartilage-matrix proteoglycan synthesis by morphologically transformed chondrocytes grown in the presence of fibroblast growth factor and transforming growth factor-beta. J Cell Physiol 138:329–337

    Article  PubMed  CAS  Google Scholar 

  61. Pei M, Seidel J, Vunjak-Novakovic G, Freed LE (2002) Growth factors for sequential cellular de- and re-differentiation in tissue engineering. Biochem Biophys Res Co 294:149–154

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by grant 616/04 from the “Bayerische Forschungsstiftung”, Bavaria, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Göpferich.

Additional information

The authors have full control of all primary data and they agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review their data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, F., Pollinger, K., Brandl, F. et al. Hyalocyte proliferation and ECM accumulation modulated by bFGF and TGF-β1. Graefes Arch Clin Exp Ophthalmol 246, 1275–1284 (2008). https://doi.org/10.1007/s00417-008-0846-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-008-0846-z

Keywords

Navigation