Skip to main content
Log in

Prognostic role of slow vital capacity in amyotrophic lateral sclerosis

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Objectives

To compare the prognostic role of FVC and SVC at diagnosis in amyotrophic lateral sclerosis (ALS) patients.

Methods

We included all patients from the Piemonte and Valle D’Aosta ALS register (PARALS) who had been diagnosed with ALS between 1995 and 2015 and underwent spirometry at diagnosis. Survival was considered as time to death/tracheostomy; to assess the prognostic value in typical trial timeframes, survival at 12 and 18 months was calculated too. Cox proportional hazard regression models adjusted by sex, age at diagnosis, diagnostic delay, onset site, and ALSFRS-R total score at the moment of diagnosis were used to assess the prognostic role of FVC and SVC.

Results

A total of 795 ALS patients underwent spirometry at diagnosis during the study period. Four hundred and sixteen (52.3%) performed both FVC and SVC, whereas the others performed FVC only. FVC and SVC values were highly correlated (r = 0.92, p < 0.001) in the overall population and slightly less correlated in patients with bulbar onset (r = 0.86, p < 0.001). Both FVC and SVC proved to have a prognostic role with comparable hazard ratios (HRs) (HR 1.83, 95% CI 1.48–2.27 and 1.88, 95% CI 1.51–2.33, respectively). When considering typical trial timeframes, HRs remained similar and were inversely proportional to FVC and SVC values.

Discussion

FVC and SVC at diagnosis can be used interchangeably as independent predictors of survival in both clinical and research settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. van Es MA, Hardiman O, Chio A et al (2017) Amyotrophic lateral sclerosis. Lancet 390:2084–2098. https://doi.org/10.1016/S0140-6736(17)31287-4

    Article  PubMed  Google Scholar 

  2. Amyotrophic Lateral Sclerosis (ALS) Fact Sheet|National Institute of Neurological Disorders and Stroke. https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Amyotrophic-Lateral-Sclerosis-ALS-Fact-Sheet. Accessed 20 Mar 2019

  3. Pinto S, de Carvalho M (2015) The R of ALSFRS-R: does it really mirror functional respiratory involvement in amyotrophic lateral sclerosis? Amyotroph Lateral Scler Front Degener 16:120–123. https://doi.org/10.3109/21678421.2014.952641

    Article  Google Scholar 

  4. Lenglet T, Lacomblez L, Abitbol JL et al (2014) A phase II–III trial of olesoxime in subjects with amyotrophic lateral sclerosis. Eur J Neurol 21:529–536. https://doi.org/10.1111/ene.12344

    Article  CAS  PubMed  Google Scholar 

  5. Czaplinski A, Yen AA, Appel SH (2006) Forced vital capacity (FVC) as an indicator of survival and disease progression in an ALS clinic population. J Neurol Neurosurg Psychiatry 77:390–392. https://doi.org/10.1136/jnnp.2005.072660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tilanus TBM, Groothuis JT, TenBroek-Pastoor JMC et al (2017) The predictive value of respiratory function tests for non-invasive ventilation in amyotrophic lateral sclerosis. Respir Res 18:144. https://doi.org/10.1186/s12931-017-0624-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pinto S, De Carvalho M (2015) Sessions 1–11. Amyotroph Lateral Scler Front Degener 16:1–62. https://doi.org/10.3109/21678421.2015.1089039

    Article  Google Scholar 

  8. Magnus T, Beck M, Giess R et al (2002) Disease progression in amyotrophic lateral sclerosis: predictors of survival. Muscle Nerve 25:709–714. https://doi.org/10.1002/mus.10090

    Article  CAS  PubMed  Google Scholar 

  9. Andrews JA, Meng L, Kulke SF et al (2018) Association between decline in slow vital capacity and respiratory insufficiency, use of assisted ventilation, tracheostomy, or death in patients with amyotrophic lateral sclerosis. JAMA Neurol 75:58–64. https://doi.org/10.1001/jamaneurol.2017.3339

    Article  PubMed  Google Scholar 

  10. Singh D, Verma R, Garg RK et al (2011) Assessment of respiratory functions by spirometry and phrenic nerve studies in patients of amyotrophic lateral sclerosis. J Neurol Sci 306:76–81. https://doi.org/10.1016/j.jns.2011.03.039

    Article  PubMed  Google Scholar 

  11. Lyall RA, Donaldson N, Polkey MI et al (2001) Respiratory muscle strength and ventilatory failure in amyotrophic lateral sclerosis. Brain J Neurol 124:2000–2013

    Article  CAS  Google Scholar 

  12. Jackson C, De Carvalho M, Genge A et al (2018) Relationships between slow vital capacity and measures of respiratory function on the ALSFRS-R. Amyotroph Lateral Scler Front Degener. https://doi.org/10.1080/21678421.2018.1497658

    Article  Google Scholar 

  13. Enache I, Pistea C, Fleury M et al (2017) Ability of pulmonary function decline to predict death in amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler Front Degener 18:511–518. https://doi.org/10.1080/21678421.2017.1353097

    Article  Google Scholar 

  14. Baumann F, Henderson RD, Morrison SC et al (2010) Use of respiratory function tests to predict survival in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 11:194–202. https://doi.org/10.3109/17482960902991773

    Article  PubMed  Google Scholar 

  15. Pinto S, de Carvalho M (2017) Correlation between forced vital capacity and slow vital capacity for the assessment of respiratory involvement in amyotrophic lateral sclerosis: a prospective study. Amyotroph Lateral Scler Front Degener 18:86–91. https://doi.org/10.1080/21678421.2016.1249486

    Article  Google Scholar 

  16. Traynor BJ, Zhang H, Shefner JM et al (2004) Functional outcome measures as clinical trial endpoints in ALS. Neurology 63:1933–1935

    Article  CAS  PubMed  Google Scholar 

  17. Kaufmann P, Levy G, Thompson JLP et al (2005) The ALSFRSr predicts survival time in an ALS clinic population. Neurology 64:38–43. https://doi.org/10.1212/01.WNL.0000148648.38313.64

    Article  CAS  PubMed  Google Scholar 

  18. Pinto S, de Carvalho M (2019) SVC is a marker of respiratory decline function, similar to FVC, in patients with ALS. Front Neurol 10:109. https://doi.org/10.3389/fneur.2019.00109

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pinto S, de Carvalho M (2017) Comparison of slow and forced vital capacities on ability to predict survival in ALS. Amyotroph Lateral Scler Front Degener 18:528–533. https://doi.org/10.1080/21678421.2017.1354995

    Article  Google Scholar 

  20. Chiò A, Mora G, Moglia C et al (2017) Secular trends of amyotrophic lateral sclerosis: the Piemonte and Valle d’Aosta Register. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2017.1387

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cedarbaum JM, Stambler N, Malta E et al (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J Neurol Sci 169:13–21

    Article  CAS  PubMed  Google Scholar 

  22. Manera U, Calvo A, Daviddi M et al (2019) Regional spreading of symptoms at diagnosis as a prognostic marker in amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2019-321153

    Article  PubMed  Google Scholar 

  23. EFNS Task Force on Diagnosis, and Management of Amyotrophic Lateral Sclerosis, Andersen PM, Abrahams S et al (2012) EFNS guidelines on the clinical management of amyotrophic lateral sclerosis (MALS)—revised report of an EFNS task force. Eur J Neurol 19:360–375. https://doi.org/10.1111/j.1468-1331.2011.03501.x

    Article  Google Scholar 

  24. Polkey MI, Green M, Moxham J (1995) Measurement of respiratory muscle strength. Thorax 50:1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lechtzin N, Wiener CM, Shade DM et al (2002) Spirometry in the supine position improves the detection of diaphragmatic weakness in patients with amyotrophic lateral sclerosis. Chest 121:436–442

    Article  PubMed  Google Scholar 

  26. Caruso P, de Albuquerque ALP, Santana PV et al (2015) Diagnostic methods to assess inspiratory and expiratory muscle strength. J Bras Pneumol 41:110–123. https://doi.org/10.1590/S1806-37132015000004474

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jackson CE, Rosenfeld J, Moore DH et al (2001) A preliminary evaluation of a prospective study of pulmonary function studies and symptoms of hypoventilation in ALS/MND patients. J Neurol Sci 191:75–78

    Article  CAS  PubMed  Google Scholar 

  28. Fitting JW, Paillex R, Hirt L et al (1999) Sniff nasal pressure: a sensitive respiratory test to assess progression of amyotrophic lateral sclerosis. Ann Neurol 46:887–893

    Article  CAS  PubMed  Google Scholar 

  29. Pinto S, de Carvalho M (2018) Sniff nasal inspiratory pressure (SNIP) in amyotrophic lateral sclerosis: relevance of the methodology for respiratory function evaluation. Clin Neurol Neurosurg 171:42–45. https://doi.org/10.1016/j.clineuro.2018.05.011

    Article  PubMed  Google Scholar 

  30. Capozzo R, Quaranta VN, Pellegrini F et al (2015) Sniff nasal inspiratory pressure as a prognostic factor of tracheostomy or death in amyotrophic lateral sclerosis. J Neurol 262:593–603. https://doi.org/10.1007/s00415-014-7613-3

    Article  PubMed  Google Scholar 

  31. Morgan RK, McNally S, Alexander M et al (2005) Use of Sniff nasal-inspiratory force to predict survival in amyotrophic lateral sclerosis. Am J Respir Crit Care Med 171:269–274. https://doi.org/10.1164/rccm.200403-314OC

    Article  PubMed  Google Scholar 

  32. Matsuda C, Shimizu T, Nakayama Y, Haraguchi M (2019) Cough peak flow decline rate predicts survival in patients with amyotrophic lateral sclerosis. Muscle Nerve 59:168–173. https://doi.org/10.1002/mus.26320

    Article  PubMed  Google Scholar 

  33. Pinto S, Pinto A, de Carvalho M (2012) Phrenic nerve studies predict survival in amyotrophic lateral sclerosis. Clin Neurophysiol 123:2454–2459. https://doi.org/10.1016/j.clinph.2012.05.012

    Article  PubMed  Google Scholar 

  34. Boentert M, Glatz C, Helmle C et al (2018) Prevalence of sleep apnoea and capnographic detection of nocturnal hypoventilation in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 89:418–424. https://doi.org/10.1136/jnnp-2017-316515

    Article  PubMed  Google Scholar 

  35. Rafiq MK, Bradburn M, Proctor AR et al (2012) Using transcutaneous carbon dioxide monitor (TOSCA 500) to detect respiratory failure in patients with amyotrophic lateral sclerosis: a validation study. Amyotroph Lateral Scler 13:528–532. https://doi.org/10.3109/17482968.2012.688836

    Article  CAS  PubMed  Google Scholar 

  36. Schiffman PL, Belsh JM (1993) Pulmonary function at diagnosis of amyotrophic lateral sclerosis: rate of deterioration. Chest 103:508–513

    Article  CAS  PubMed  Google Scholar 

  37. Chiò A, Canosa A, Gallo S et al (2011) ALS clinical trials: do enrolled patients accurately represent the ALS population? Neurology 77:1432–1437. https://doi.org/10.1212/WNL.0b013e318232ab9b

    Article  PubMed  Google Scholar 

  38. Van Eijk RPA, Westeneng H-J, Nikolakopoulos S et al (2019) Refining eligibility criteria for amyotrophic lateral sclerosis clinical trials. Neurology. https://doi.org/10.1212/WNL.0000000000006855

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The project has been supported by Cytokinetics Inc. research Grant; AntC thanks Magnetto Foundation. This study was supported by Ministero dell’Istruzione, dell’Università e della Ricerca–MIUR project “Dipartimenti di Eccellenza 2018–2022” to Department of Neuroscience “Rita Levi Montalcini”.

Author information

Authors and Affiliations

Authors

Contributions

AC, AC and CM contributed to fund raising, study conception and design, interpretation of results and revision of the manuscript. AM, LF, LM, AC, EM, and CLM contributed to data collection and revision of the manuscript. RV, UM and FD contributed to study design, data analysis, interpretation of results, writing and revision of the manuscript.

Corresponding author

Correspondence to Andrea Calvo.

Ethics declarations

Conflicts of interest

ACh reports personal fees from Biogen Idec, Cytokinetics, Mitsubishi Tanabe, and Neuraltus, outside the submitted work; other authors have no conflicts of interest.

Ethical approval

The study was approved by the ethical committee of the centers involved. Databases were treated according to the Italian privacy regulations. Patients signed a written informed consent. Anonymized data will be shared on request from any qualified investigator.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvo, A., Vasta, R., Moglia, C. et al. Prognostic role of slow vital capacity in amyotrophic lateral sclerosis. J Neurol 267, 1615–1621 (2020). https://doi.org/10.1007/s00415-020-09751-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-020-09751-1

Keywords

Navigation