Skip to main content
Log in

Cognitive impairment and structural brain changes in patients with clinically isolated syndrome at high risk for multiple sclerosis

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Patients with clinically isolated syndrome (CIS), unlike those with multiple sclerosis (MS), have a selective cognitive impairment which is not consistently related to structural brain changes. Our objective was to characterize a profile of cognitive impairment and its association with structural brain changes in patients with CIS who are at high risk of developing MS. Patients with CIS at high risk for MS on interferon-beta (n = 51) and age-, gender-, and education-matched controls (n = 44) underwent comprehensive neuropsychological testing and MRI brain scan with voxel-based morphometry. The CIS group had lower cognitive performance in verbal and nonverbal memory, information processing speed/attention/working memory, and executive and visuo-spatial functions compared to controls (p ≤ 0.040). Lower cognitive performance was present in 18–37 and 14–26% of patients with CIS at high risk for MS depending on the criteria used. Brain volume was reduced predominantly in fronto-temporal regions and the thalamus in the CIS group (p ≤ 0.019). Cognitive performance was not associated with structural brain changes except for the association between worse visuo-spatial performance and lower white matter volume in the CIS group (β = 0.29; p = 0.042). Our results indicated that patients with CIS at high risk for MS may have a pattern of lower cognitive performance and regional brain atrophy similar to that found in patients with MS. Lower cognitive performance may be present in up to one-third of patients with CIS at high risk for MS, but, unlike patients with MS, variability in their cognitive performance may lead to a lack of consistent associations with structural brain changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chiaravalloti ND, DeLuca J (2008) Cognitive impairment in multiple sclerosis. Lancet Neurol 7(12):1139–1151. doi:10.1016/S1474-4422(08)70259-X

    Article  PubMed  Google Scholar 

  2. Potagas C, Giogkaraki E, Koutsis G, Mandellos D, Tsirempolou E, Sfagos C, Vassilopoulos D (2008) Cognitive impairment in different MS subtypes and clinically isolated syndromes. J Neurol Sci 267(1–2):100–106. doi:10.1016/j.jns.2007.10.002

    Article  PubMed  Google Scholar 

  3. Hildebrandt H, Hahn HK, Kraus JA, Schulte-Herbruggen A, Schwarze B, Schwendemann G (2006) Memory performance in multiple sclerosis patients correlates with central brain atrophy. Mult Scler 12(4):428–436

    Article  CAS  PubMed  Google Scholar 

  4. Benedict RH, Bruce JM, Dwyer MG, Abdelrahman N, Hussein S, Weinstock-Guttman B, Garg N, Munschauer F, Zivadinov R (2006) Neocortical atrophy, third ventricular width, and cognitive dysfunction in multiple sclerosis. Arch Neurol 63(9):1301–1306. doi:10.1001/archneur.63.9.1301

    Article  PubMed  Google Scholar 

  5. Calabrese M, Rinaldi F, Mattisi I, Grossi P, Favaretto A, Atzori M, Bernardi V, Barachino L, Romualdi C, Rinaldi L, Perini P, Gallo P (2010) Widespread cortical thinning characterizes patients with MS with mild cognitive impairment. Neurology 74(4):321–328. doi:10.1212/WNL.0b013e3181cbcd03

    Article  CAS  PubMed  Google Scholar 

  6. Khalil M, Enzinger C, Langkammer C, Petrovic K, Loitfelder M, Tscherner M, Jehna M, Bachmaier G, Wallner-Blazek M, Ropele S, Schmidt R, Fuchs S, Fazekas F (2011) Cognitive impairment in relation to MRI metrics in patients with clinically isolated syndrome. Mult Scler 17(2):173–180. doi:10.1177/1352458510384009

    Article  CAS  PubMed  Google Scholar 

  7. Benedict RH, Ramasamy D, Munschauer F, Weinstock-Guttman B, Zivadinov R (2009) Memory impairment in multiple sclerosis: correlation with deep grey matter and mesial temporal atrophy. J Neurol Neurosurg Psychiatry 80(2):201–206. doi:10.1136/jnnp.2008.148403

    Article  CAS  PubMed  Google Scholar 

  8. Batista S, Zivadinov R, Hoogs M, Bergsland N, Heininen-Brown M, Dwyer MG, Weinstock-Guttman B, Benedict RH (2012) Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis. J Neurol 259(1):139–146. doi:10.1007/s00415-011-6147-1

    Article  PubMed  Google Scholar 

  9. Glanz BI, Holland CM, Gauthier SA, Amunwa EL, Liptak Z, Houtchens MK, Sperling RA, Khoury SJ, Guttmann CR, Weiner HL (2007) Cognitive dysfunction in patients with clinically isolated syndromes or newly diagnosed multiple sclerosis. Mult Scler 13(8):1004–1010. doi:10.1177/1352458507077943

    Article  CAS  PubMed  Google Scholar 

  10. Amato MP, Portaccio E, Goretti B, Zipoli V, Battaglini M, Bartolozzi ML, Stromillo ML, Guidi L, Siracusa G, Sorbi S, Federico A, De Stefano N (2007) Association of neocortical volume changes with cognitive deterioration in relapsing-remitting multiple sclerosis. Arch Neurol 64(8):1157–1161. doi:10.1001/archneur.64.8.1157

    Article  PubMed  Google Scholar 

  11. Nocentini U, Bozzali M, Spano B, Cercignani M, Serra L, Basile B, Mannu R, Caltagirone C, De Luca J (2014) Exploration of the relationships between regional grey matter atrophy and cognition in multiple sclerosis. Brain Imaging Behav 8(3):378–386. doi:10.1007/s11682-012-9170-7

    Article  PubMed  Google Scholar 

  12. Benedict RH, Zivadinov R, Carone DA, Weinstock-Guttman B, Gaines J, Maggiore C, Sharma J, Tomassi MA, Bakshi R (2005) Regional lobar atrophy predicts memory impairment in multiple sclerosis. AJNR Am J Neuroradiol 26(7):1824–1831

    PubMed  Google Scholar 

  13. Tekok-Kilic A, Benedict RH, Weinstock-Guttman B, Dwyer MG, Carone D, Srinivasaraghavan B, Yella V, Abdelrahman N, Munschauer F, Bakshi R, Zivadinov R (2007) Independent contributions of cortical gray matter atrophy and ventricle enlargement for predicting neuropsychological impairment in multiple sclerosis. Neuroimage 36(4):1294–1300. doi:10.1016/j.neuroimage.2007.04.017

    Article  PubMed  Google Scholar 

  14. Sanchez MP, Nieto A, Barroso J, Martin V, Hernandez MA (2008) Brain atrophy as a marker of cognitive impairment in mildly disabling relapsing-remitting multiple sclerosis. Eur J Neurol 15(10):1091–1099. doi:10.1111/j.1468-1331.2008.02259.x

    Article  CAS  PubMed  Google Scholar 

  15. Zivadinov R, De Masi R, Nasuelli D, Bragadin LM, Ukmar M, Pozzi-Mucelli RS, Grop A, Cazzato G, Zorzon M (2001) MRI techniques and cognitive impairment in the early phase of relapsing-remitting multiple sclerosis. Neuroradiology 43(4):272–278

    Article  CAS  PubMed  Google Scholar 

  16. Lazeron RH, Boringa JB, Schouten M, Uitdehaag BM, Bergers E, Lindeboom J, Eikelenboom MI, Scheltens PH, Barkhof F, Polman CH (2005) Brain atrophy and lesion load as explaining parameters for cognitive impairment in multiple sclerosis. Mult Scler 11(5):524–531

    Article  CAS  PubMed  Google Scholar 

  17. Fulton JC, Grossman RI, Udupa J, Mannon LJ, Grossman M, Wei L, Polansky M, Kolson DL (1999) MR lesion load and cognitive function in patients with relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol 20(10):1951–1955

    CAS  PubMed  Google Scholar 

  18. Calabrese M, Agosta F, Rinaldi F, Mattisi I, Grossi P, Favaretto A, Atzori M, Bernardi V, Barachino L, Rinaldi L, Perini P, Gallo P, Filippi M (2009) Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch Neurol 66(9):1144–1150. doi:10.1001/archneurol.2009.174

    Article  PubMed  Google Scholar 

  19. Simioni S, Ruffieux C, Bruggimann L, Annoni JM, Schluep M (2007) Cognition, mood and fatigue in patients in the early stage of multiple sclerosis. Swiss Med Wkly 137(35–36):496–501

    CAS  PubMed  Google Scholar 

  20. Fisniku LK, Brex PA, Altmann DR, Miszkiel KA, Benton CE, Lanyon R, Thompson AJ, Miller DH (2008) Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain 131(Pt 3):808–817. doi:10.1093/brain/awm329

    Article  CAS  PubMed  Google Scholar 

  21. Tintore M, Rovira A, Rio J, Otero-Romero S, Arrambide G, Tur C, Comabella M, Nos C, Arevalo MJ, Negrotto L, Galan I, Vidal-Jordana A, Castillo J, Palavra F, Simon E, Mitjana R, Auger C, Sastre-Garriga J, Montalban X (2015) Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain 138(Pt 7):1863–1874. doi:10.1093/brain/awv105

    Article  PubMed  Google Scholar 

  22. Summers M, Swanton J, Fernando K, Dalton C, Miller DH, Cipolotti L, Ron MA (2008) Cognitive impairment in multiple sclerosis can be predicted by imaging early in the disease. J Neurol Neurosurg Psychiatry 79(8):955–958. doi:10.1136/jnnp.2007.138685

    Article  CAS  PubMed  Google Scholar 

  23. Audoin B, Zaaraoui W, Reuter F, Rico A, Malikova I, Confort-Gouny S, Cozzone PJ, Pelletier J, Ranjeva JP (2010) Atrophy mainly affects the limbic system and the deep grey matter at the first stage of multiple sclerosis. J Neurol Neurosurg Psychiatry 81(6):690–695. doi:10.1136/jnnp.2009.188748

    Article  PubMed  Google Scholar 

  24. Feuillet L, Reuter F, Audoin B, Malikova I, Barrau K, Cherif AA, Pelletier J (2007) Early cognitive impairment in patients with clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 13(1):124–127

    Article  CAS  PubMed  Google Scholar 

  25. Viterbo RG, Iaffaldano P, Trojano M (2013) Verbal fluency deficits in clinically isolated syndrome suggestive of multiple sclerosis. J Neurol Sci 330(1–2):56–60. doi:10.1016/j.jns.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  26. Panou T, Mastorodemos V, Papadaki E, Simos PG, Plaitakis A (2012) Early signs of memory impairment among multiple sclerosis patients with clinically isolated syndrome. Behav Neurol 25(4):311–326. doi:10.3233/BEN-2012-110201

    Article  PubMed  Google Scholar 

  27. Uher T, Blahova-Dusankova J, Horakova D, Bergsland N, Tyblova M, Benedict RH, Kalincik T, Ramasamy DP, Seidl Z, Hagermeier J, Vaneckova M, Krasensky J, Havrdova E, Zivadinov R (2014) Longitudinal MRI and neuropsychological assessment of patients with clinically isolated syndrome. J Neurol 261(9):1735–1744. doi:10.1007/s00415-014-7413-9

    Article  PubMed  Google Scholar 

  28. Achiron A, Barak Y (2003) Cognitive impairment in probable multiple sclerosis. J Neurol Neurosurg Psychiatry 74(4):443–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Steckova T, Hlustik P, Sladkova V, Odstrcil F, Mares J, Kanovsky P (2014) Thalamic atrophy and cognitive impairment in clinically isolated syndrome and multiple sclerosis. J Neurol Sci 342(1–2):62–68. doi:10.1016/j.jns.2014.04.026

    Article  PubMed  Google Scholar 

  30. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302. doi:10.1002/ana.22366

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dufek M (2014) Léčba roztroušené sklerózy v České republice—možnosti a realita. Neurol praxi 15(1):31–35

    Google Scholar 

  32. Tintore M, Rovira A, Brieva L, Grive E, Jardi R, Borras C, Montalban X (2001) Isolated demyelinating syndromes: comparison of CSF oligoclonal bands and different MR imaging criteria to predict conversion to CDMS. Mult Scler 7(6):359–363

    Article  CAS  PubMed  Google Scholar 

  33. Bezdicek O, Stepankova H, Motak L, Axelrod BN, Woodard JL, Preiss M, Nikolai T, Ruzicka E, Poreh A (2014) Czech version of Rey Auditory Verbal Learning Test: normative data. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 21(6):693–721. doi:10.1080/13825585.2013.865699

    Article  PubMed  Google Scholar 

  34. Schmidt M (1996) Rey auditory verbal learning test: a handbook. Western Psychological Services, Los Angeles

    Google Scholar 

  35. Benedict R (1997) Brief Visuospatial Memory Test-revised professional manual. Psychological Assessment Resources Inc., Odessa

    Google Scholar 

  36. Smith A (1982) Symbol digit modalities test: Manual. Western Psychological Service, Los Angeles

    Google Scholar 

  37. Gronwall D (1977) Paced auditory serial-addition task: a measure of recovery from concussion. Percept Mot Skills 44(2):367–373

    Article  CAS  PubMed  Google Scholar 

  38. Wechsler D (1997) WAIS-III: administration and scoring manual: Wechsler Adult Intelligence Scale. Psychological Corporation, San Antonio

    Google Scholar 

  39. Bezdicek O, Motak L, Axelrod BN, Preiss M, Nikolai T, Vyhnalek M, Poreh A, Ruzicka E (2012) Czech version of the Trail Making Test: normative data and clinical utility. Arch Clin Neuropsychol 27(8):906–914. doi:10.1093/arclin/acs084

    Article  PubMed  Google Scholar 

  40. Reitan RM (1958) Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills 8:271–276

    Article  Google Scholar 

  41. Nikolai T, Stepankova H, Michalec J, Bezdicek O, Horakova K, Markova H, Ruzicka E, Kopecek M (2015) Testy verbální fluence, česká normativní studie pro osoby vyššího věku. Cesk Slov Neurol 78/111(3):292–299

    Article  Google Scholar 

  42. Benton AL, Hamsher K, Varney NR, Spreen O (1983) Contributions to neuropsychological assessment: a clinical manual. Oxford, New York

    Google Scholar 

  43. Loring DW, Lowenstein DH, Barbaro NM, Fureman BE, Odenkirchen J, Jacobs MP, Austin JK, Dlugos DJ, French JA, Gaillard WD, Hermann BP, Hesdorffer DC, Roper SN, Van Cott AC, Grinnon S, Stout A (2011) Common data elements in epilepsy research: development and implementation of the NINDS epilepsy CDE project. Epilepsia 52(6):1186–1191. doi:10.1111/j.1528-1167.2011.03018

    Article  PubMed  PubMed Central  Google Scholar 

  44. Weintraub S, Salmon D, Mercaldo N, Ferris S, Graff-Radford NR, Chui H, Cummings J, DeCarli C, Foster NL, Galasko D, Peskind E, Dietrich W, Beekly DL, Kukull WA, Morris JC (2009) The Alzheimer’s Disease Centers’ Uniform Data Set (UDS): the neuropsychologic test battery. Alzheimer Dis Assoc Disord 23(2):91–101. doi:10.1097/WAD.0b013e318191c7dd

    Article  PubMed  PubMed Central  Google Scholar 

  45. Beck AT, Beamesderfer A (1974) Assessment of depression: the depression inventory. Modern Probl Pharmacopsychiatry 7:151–169

    Article  CAS  Google Scholar 

  46. Beck AT, Epstein N, Brown G, Steer RA (1988) An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol 56(6):893–897

    Article  CAS  PubMed  Google Scholar 

  47. Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256(3):183–194. doi:10.1111/j.1365-2796.2004.01388.x

    Article  CAS  PubMed  Google Scholar 

  48. Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, De Stefano N (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17(1):479–489

    Article  PubMed  Google Scholar 

  49. Battaglini M, Jenkinson M, De Stefano N (2012) Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp 33(9):2062–2071. doi:10.1002/hbm.21344

    Article  PubMed  Google Scholar 

  50. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE (2014) Permutation inference for the general linear model. Neuroimage 92:381–397. doi:10.1016/j.neuroimage.2014.01.060

    Article  PubMed  PubMed Central  Google Scholar 

  51. Filippi M, Horsfield MA, Morrissey SP, MacManus DG, Rudge P, McDonald WI, Miller DH (1994) Quantitative brain MRI lesion load predicts the course of clinically isolated syndromes suggestive of multiple sclerosis. Neurology 44(4):635–641

    Article  CAS  PubMed  Google Scholar 

  52. Henry RG, Shieh M, Okuda DT, Evangelista A, Gorno-Tempini ML, Pelletier D (2008) Regional grey matter atrophy in clinically isolated syndromes at presentation. J Neurol Neurosurg Psychiatry 79(11):1236–1244. doi:10.1136/jnnp.2007.134825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bergsland N, Horakova D, Dwyer MG, Dolezal O, Seidl ZK, Vaneckova M, Krasensky J, Havrdova E, Zivadinov R (2012) Subcortical and cortical gray matter atrophy in a large sample of patients with clinically isolated syndrome and early relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol 33(8):1573–1578. doi:10.3174/ajnr.A3086

    Article  CAS  PubMed  Google Scholar 

  54. Shiee N, Bazin PL, Zackowski KM, Farrell SK, Harrison DM, Newsome SD, Ratchford JN, Caffo BS, Calabresi PA, Pham DL, Reich DS (2012) Revisiting brain atrophy and its relationship to disability in multiple sclerosis. PLoS One 7(5):e37049. doi:10.1371/journal.pone.0037049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sumowski JF, Leavitt VM (2013) Cognitive reserve in multiple sclerosis. Mult Scler 19(9):1122–1127. doi:10.1177/1352458513498834

    Article  PubMed  Google Scholar 

  56. Penner IK, Stemper B, Calabrese P, Freedman MS, Polman CH, Edan G, Hartung HP, Miller DH, Montalban X, Barkhof F, Pleimes D, Lanius V, Pohl C, Kappos L, Sandbrink R (2012) Effects of interferon beta-1b on cognitive performance in patients with a first event suggestive of multiple sclerosis. Mult Scler 18(10):1466–1471. doi:10.1177/1352458512442438

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vaneckova M, Kalincik T, Krasensky J, Horakova D, Havrdova E, Hrebikova T, Seidl Z (2012) Corpus callosum atrophy–a simple predictor of multiple sclerosis progression: a longitudinal 9-year study. Eur Neurol 68(1):23–27. doi:10.1159/000337683

    Article  CAS  PubMed  Google Scholar 

  58. Evangelou N, Konz D, Esiri MM, Smith S, Palace J, Matthews PM (2000) Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain 123(Pt 9):1845–1849

    Article  PubMed  Google Scholar 

  59. Granberg T, Martola J, Bergendal G, Shams S, Damangir S, Aspelin P, Fredrikson S, Kristoffersen-Wiberg M (2015) Corpus callosum atrophy is strongly associated with cognitive impairment in multiple sclerosis: results of a 17-year longitudinal study. Mult Scler 21(9):1151–1158. doi:10.1177/1352458514560928

    Article  PubMed  Google Scholar 

  60. Kearney H, Rocca MA, Valsasina P, Balk L, Sastre-Garriga J, Reinhardt J, Ruggieri S, Rovira A, Stippich C, Kappos L, Sprenger T, Tortorella P, Rovaris M, Gasperini C, Montalban X, Geurts JJ, Polman CH, Barkhof F, Filippi M, Altmann DR, Ciccarelli O, Miller DH, Chard DT (2014) Magnetic resonance imaging correlates of physical disability in relapse onset multiple sclerosis of long disease duration. Mult Scler 20(1):72–80. doi:10.1177/1352458513492245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Krámská L (2014) Hodnocení premorbidního intelektu v neuropsychologii: český test čtení slov. Czech reading test (CRT). Propsyco

Download references

Acknowledgements

This study was supported by the Ministry of Health, Czech Republic—Internal Grant Agency (NT/12385-5 and NR/9445-3); Ministry of Health, Czech Republic—conceptual development of research organization, University Hospital Motol, Prague, Czech Republic (00064203); Institutional Support of Laboratory Research Grant No. 2/2012 (699002); Institutional Support of Excellence Grant; the project no. LQ1605 (MEYS CR, NPU II); European Regional Development Fund—Project FNUSA-ICRC (No. CZ.1.05/1.1.00/02.0123) and project ICRC-ERA-HumanBridge (No. 316345).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Laczó.

Ethics declarations

Conflicts of interest

On behalf of all author, the corresponding author states that there is no conflict of interest.

Ethical standards

The study was approved by the institutional ethics committee of the Motol University Hospital. Written informed consent was obtained from all subjects participating in the study. The study was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsiniki.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hynčicová, E., Vyhnálek, M., Kalina, A. et al. Cognitive impairment and structural brain changes in patients with clinically isolated syndrome at high risk for multiple sclerosis. J Neurol 264, 482–493 (2017). https://doi.org/10.1007/s00415-016-8368-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-016-8368-9

Keywords

Navigation