Skip to main content

Advertisement

Log in

Gender-related effect of clinical and genetic variables on the cognitive impairment in multiple sclerosis

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract.

Background:

Cognitive impairment may occur at any time during the course of multiple sclerosis (MS), and it is often a major cause of disability in patients with the disease. The APOE-ε4 allele is the major known genetic risk factor for late onset familial and sporadic Alzheimer’s Disease (AD), and it seems to be implicated in cognitive decline in normal elderly persons.

Objective:

To investigate the clinical and genetic variables that can be associated with the cognitive decline in patients with MS.

Methods:

Five-hundred and three patients with clinically definite MS underwent a battery of neuropsychological tests and, according to the number of failed tests, were divided into cognitively normal and impaired. All patients were genotyped for APOE gene polymorphisms.

Results:

Fifty-six percent of MS patients showed, to different extents, cognitive impairment. Cognitive decline was predominant in men and was associated with disease duration, Kurtzke Expanded Disability Status Scale (EDSS) score, a low level of education, and, interestingly, the ε4 allele of the APOE gene. By contrast, cognitive impairment in women was independent of any investigated variable.

Conclusion:

The findings demonstrate that clinical and genetic factors play a role in men affected by MS developing cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amato MP, Ponziani G, Siracusa G, Sorbi S (2001) Cognitive dysfunction in early-onset multiple sclerosis. A reappraisal after 10 years. Arch Neurol 58:1602–1606

    Article  CAS  PubMed  Google Scholar 

  2. Beatty WW (1993) Memory and “frontal lobe” dysfunction in multiple sclerosis. J Neurol Sci 115:S38–S41

    Article  PubMed  Google Scholar 

  3. Beatty WW, Aupperle RL (2000) Sex differences in cognitive impairment in multiple sclerosis. Clin Neuropsychol 16:472–480

    Article  Google Scholar 

  4. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571

    CAS  PubMed  Google Scholar 

  5. Bobholz JA, Rao SM (2003) Cognitive dysfunction in multiple sclerosis: a review of recent developments. Curr Opin Neurol 16:283–288

    Article  PubMed  Google Scholar 

  6. Borkowsky JG, Benton AL, Spean D (1967) Word fluency and brain damage. Neuropsychologia 5:135–140

    Article  Google Scholar 

  7. Brassington JC, Marsh NV (1998) Neuropsychological aspects of multiple sclerosis. Neuropsychol Rev 8:43–77

    CAS  PubMed  Google Scholar 

  8. Caltagirone C, Gainotti G, Masullo C, Miceli G (1979) Validity of some neuropsychological tests in the assessment of mental deterioration. Acta Psychiat Scand 60:50–56

    CAS  PubMed  Google Scholar 

  9. Carlesimo GA, Caltagirone C, Gainotti G (1996) The Mental Deterioration Battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. Eur Neurol 36:378–384

    CAS  PubMed  Google Scholar 

  10. Comi G, Filippi M, Martinelli V, Sirabian G, Visciani A, Compi A, Manni S, Rovaris M, Canal N (1993) Brain magnetic resonance imaging correlates of cognitive impairment in multiple sclerosis. J Neurol Sci 115 (Suppl):S66–S73

    Article  PubMed  Google Scholar 

  11. Dik MG, Jonker C, Comijs HC, Bouter LM, Twisk JW, van Kamp GJ, Deeg DJ (2001) Memory complaints and APOE-epsilon4 accelerate cognitive decline in cognitively normal elderly. Neurology 57:2217–22

    CAS  PubMed  Google Scholar 

  12. Fazekas F, Strasser-Fuchs S, Kollegger H, Berger T, Kristoferitsch W, Schmidt H, Enzinger C, Schiefermeier M, Schwarz C, Kornek B, Reindl M, Huber K, Grass R, Wimmer G, Vass K, Pfeiffer KH,Hartung HP, Schmidt R (2001) Apolipoprotein E epsilon 4 is associated with rapid progression of multiple sclerosis. Neurology 57:853–857

    CAS  PubMed  Google Scholar 

  13. Ferri C, Sciacca FL, Veglia F, Martinelli F, Comi G, Canal N, Grimaldi LM (1999) APOE epsilon2 -4 and -491 polymorphisms are not associated with MS. Neurology 53:888–889

    CAS  PubMed  Google Scholar 

  14. Gainotti G, Miceli G, Caltagirone C (1977) Constructional apraxia in leftbrain-damaged patients: a planning disorder? Cortex 13:109–118

    Google Scholar 

  15. Gandy S (2003) Estrogen and Neurodegeneration. Neurochem Res 28:1003–1008

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Segura LM, Azcoitia I, DonCarlos LL (2001) Neuroprotection by estradiol. Prog Neurobiol 63:29–60

    Article  CAS  PubMed  Google Scholar 

  17. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    CAS  PubMed  Google Scholar 

  18. Hohol MJ, Guttmann CR, Orav J, Mackin GA, Kikinis R, Khoury SJ, Jolesz FA, Weiner HL (1997) Serial neuropsychological assessment and magnetic resonance imaging analysis in multiple sclerosis. Arch Neurol 54:1018–1025

    CAS  PubMed  Google Scholar 

  19. Ignatius MJ, Gebicke-Harter PJ, Skene JH, Schilling JW, Weisgraber KH, Mahley RW, Schooter EM (1986) Expression of apolipoprotein E during nerve degeneration and regeneration. Proc Natl Acad Sci USA 83:1125–1129

    CAS  PubMed  Google Scholar 

  20. Kurtzke J (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452

    CAS  PubMed  Google Scholar 

  21. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630

    CAS  PubMed  Google Scholar 

  22. Miller DH, Grossmann RI, Reingold SC, McFarland HF (1998) The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 121:3–24

    Article  PubMed  Google Scholar 

  23. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple Sclerosis. N Engl J Med 343:938–952

    Article  CAS  PubMed  Google Scholar 

  24. Oliveri RL, Cittadella R, Sibilia G, Manna I, Valentino P, Gambardella A, Aguglia U, Zappia M, Romeo N, Andreoli V, Bono F, Caracciolo M, Quattrone A (1999) APOE and risk of cognitive impairment in multiple sclerosis. Acta Neurol Scand 100:290–295

    CAS  PubMed  Google Scholar 

  25. Poser CM, Paty DW, Scheinberg L, Mc-Donald WI, Davis FA, Ebers GC, Johnson KP, Sibley WA, Silberberg DH, Tourtellotte WW (1983) New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 13:227–231

    Google Scholar 

  26. Rao SM (1986) Neuropsychology of multiple sclerosis: a critical review. J Clin Exp Neuropsychol 8:503–542

    CAS  PubMed  Google Scholar 

  27. Rao SM (1997) Neuropsychological aspects of multiple sclerosis. In: Raine CS, McFarland HF, Tourtellotte WW (eds) Multiple Sclerosis: Clinical and Pathological Basis. Chapman & Hall London, England, pp 357–362

  28. Rao SM, Leo GJ, Haughton VM, St Aubin-Faubert P, Bernardin L (1989) Correlation of magnetic resonance imaging with neuropsychological testing in multiple sclerosis. Neurology 39:161–166

    CAS  PubMed  Google Scholar 

  29. Rao SM, Leo GJ, Bernardin L, Unverzagt F (1991) Cognitive dysfunction in multiple sclerosis: frequency, patterns and prediction. Neurology 41:685–691

    CAS  PubMed  Google Scholar 

  30. Raven JC (1947) Progressive Matrices Sets A, Ab, B: Board and Book forms. HK Lewis, London

  31. Rey A (1964) Mémorisation d’une série de 15 mots en 5 repetitions. In: Rey A ed) L’examen clinique en psychologie. Presses Universitaire de France, Paris

  32. Saunders AM, Schmader K, Breitner JC, Benson MD, Brown WT, Goldfarb L, Goldgaber D, Manwaring MG, Szymanski MH, McCown N (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43:1467–1472

    CAS  PubMed  Google Scholar 

  33. Schneider S, Roessli D, Excoffier L (2000) Arlequin, version 2000: a software for population genetics data analysis.Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Geneva

  34. Weinshenker BG, Rice GPA, Noseworthy JH, Carriere W, Baskerville J, Ebers GC (1991) The natural history of multiple sclerosis: a geographically based study 3. Multivariate analysis of predictive factors and models of outcome. Brain 114:1045–1056

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Quattrone MD.

Additional information

This work was supported in part by a grant from FISM (Federazione Italiana Sclerosi Multipla).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savettieri, G., Messina, D., Andreoli, V. et al. Gender-related effect of clinical and genetic variables on the cognitive impairment in multiple sclerosis. J Neurol 251, 1208–1214 (2004). https://doi.org/10.1007/s00415-004-0508-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-004-0508-y

Key words

Navigation