Skip to main content
Log in

Stability of upper face sexual dimorphism in central European populations (Czech Republic) during the modern age

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

One of the most fundamental issues in forensic anthropology is the determination of sex and population affinity based on various skeletal elements. Therefore, we compared the sexual dimorphism of the upper facial skeleton from a recent Czech population (twenty-first century) with that of a population from Early Modern Age Bohemia (sixteenth to eighteenth centuries). Methods of geometric morphometrics were applied. According to the results, sexual dimorphism in terms of size, shape, and form was statistically significant in both populations. The best results of sex estimation originated from analyses of form. Thus, both size and shape differences should be taken into account for determination of the sex. The accuracy of prediction achieved 91.1% for individuals in the recent population and 87.5% for individuals from the early modern population. Only minor differences were found between sexual dimorphism in the studied populations. We conclude that sexual dimorphism of the upper facial skeleton is stable during the relatively short time period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ubelaker DH, Volk CG (2002) A test of the Phenice method for the estimation of sex. J Forensic Sci 47:19–24

    PubMed  Google Scholar 

  2. Phenice TW (1969) Newly developed visual method of sexing the os pubis. Am J Phys Anthropol 30:297–302

    CAS  PubMed  Google Scholar 

  3. Bruzek J (2002) A method for visual determination of sex, using the human hip bone. Am J Phys Anthropol 117:157–168

    PubMed  Google Scholar 

  4. Spradley MK, Jantz RL (2011) Sex estimation in forensic anthropology: skull versus postcranial elements. J Forensic Sci 56:289–296

    PubMed  Google Scholar 

  5. Waldron T (1987) The relative survival of the human skeleton: implication for palaeopathology. In: Boddington A, Garland AN, Janaway RC (eds) Death, decay, and reconstruction: approaches to archaeology and forensic science. Manchester University Press, Manchester, pp 55–64

    Google Scholar 

  6. MacLaughlin SM, Bruce MF (1990) The accuracy of sex identification in European skeletal remains using the phenice characters. J Forensic Sci 35:1384–1392

    CAS  PubMed  Google Scholar 

  7. Sutherland LD, Suchey JM (1991) Use of the ventral arc in pubic sex determination. J Forensic Sci 36:501–511

    CAS  PubMed  Google Scholar 

  8. Byers SN (2015) Introduction to forensic anthropology, Fourth edn. Routledge, New York

    Google Scholar 

  9. Pickering RB, Bachman D (2009) The use of forensic anthropology, Second edn. CRC Press, Boca Ranton

    Google Scholar 

  10. Novotný V, İşcan MY, Loth SR (1993) Morphologic and osteometric assessment of age, sex and race from the skull. In: İşcan MY, Helmer RP (eds) Forensic analysis of the skull. Wiley-Liss, New York, pp 71–88

    Google Scholar 

  11. Konigsberg LW, Hens SM (1998) Am J Phys Anthropol 107:97–112

    CAS  PubMed  Google Scholar 

  12. Graw M, Wahl J, Ahlbrecht M (2005) Course of the meatus acusticus internus as criterion for sex differentiation. Forensic Sci Int 147:113–117

    CAS  PubMed  Google Scholar 

  13. Graw M, Czarnetzki A, Haffner H-T (1999) The form of the supraorbital margin as a criterion in identification of sex from the skull: investigations based on modern human skulls. Am J Phys Anthropol 108:91–96

    CAS  PubMed  Google Scholar 

  14. Rogers TL (2005) Determining the sex of human remains through cranial morphology. J Forensic Sci 50:493–500

    PubMed  Google Scholar 

  15. Buikstra JE, Ubelaker DH (1994) Standards for data collection from human skeletal remains: proceedings of a seminar at the field museum of natural history, organized by Jonathan Haas. Arkansas Archeological Survey, Fayetteville

    Google Scholar 

  16. Williams BA, Rogers TL (2006) Evaluating the accuracy and precision of cranial morphological traits for sex determination. J Forensic Sci 51:729–735

    PubMed  Google Scholar 

  17. Giles E, Elliot O (1963) Sex determination by discriminant function analysis of crania. Am J Phys Anthropol 21:53–68

    CAS  PubMed  Google Scholar 

  18. Franklin D, O’Higgins P, Oxnard CE, Dadour I (2006) Determination of sex in South African blacks by discriminant function analysis of mandibular linear dimensions: a preliminary investigation using the Zulu local population. Forensic Sci Med Pathol 2:263–268

    PubMed  Google Scholar 

  19. Gonzalez PN, Bernal V, Perez SI (2011) Analysis of sexual dimorphism of craniofacial traits using geometric morphometric techniques. Int J Osteoarchaeol 21:82–91

    Google Scholar 

  20. Kimmerle EH, Ross A, Slice D (2008) Sexual dimorphism in America: geometric morphometric analysis of the craniofacial region. J Forensic Sci 53:54–57

    PubMed  Google Scholar 

  21. Kranioti EF, Michalodimitrakis M (2009) Sexual dimorphism of the humerus in contemporary Cretan: a population-specific study and a review of the literature. J Forensic Sci 54:996–1000

    PubMed  Google Scholar 

  22. Bookstein FL (1997) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge

    Google Scholar 

  23. Zelditch ML, Swiderski DL, Sheets HD (2004) Geometric morphometrics for biologists: a primer. Elsevier Academic Press, San Diego

    Google Scholar 

  24. Slice DE (2005) Modern morphometrics in physical anthropology. Springer Science & Business Media, New York

    Google Scholar 

  25. Mitteroecker P, Gunz P, Windhager S, Schaefer K (2013) A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology. Hystrix 24:59–66

    Google Scholar 

  26. Cunha E, Van Vark G (1991) The construction of sex discriminant functions from a large collection of skulls of known sex. Int J Anthropol 6:53–66

    Google Scholar 

  27. Kemkes A, Göbel T (2006) Metric assessment of the “mastoid triangle” for sex determination: a validation study. J Forensic Sci 51:985–989

    PubMed  Google Scholar 

  28. Buretić-Tomljanović A, Ostojić S, Kapović M (2006) Secular change of craniofacial measures in Croatian younger adults. Am J Hum Biol 18:668–675

    PubMed  Google Scholar 

  29. Walker PL (2008) Sexing skulls using discriminant function analysis of visually assessed traits. Am J Phys Anthropol 136:39–50

    PubMed  Google Scholar 

  30. Garvin HM, Sholts SB, Mosca LA (2014) Sexual dimorphism in human cranial trait scores: effects of population, age, and body size. Am J Phys Anthropol 154:259–269

    PubMed  Google Scholar 

  31. Garvin HM, Ruff CB (2012) Sexual dimorphism in skeletal browridge and chin morphologies determined using a new quantitative method. Am J Phys Anthropol 147:661–670

    PubMed  Google Scholar 

  32. Lewis CJ, Garvin HM (2016) Reliability of the Walker cranial nonmetric method and implications for sex estimation. J Forensic Sci 61:743–751

    PubMed  Google Scholar 

  33. Ogawa Y, Imaizumi K, Miyasaka S, Yoshino M (2013) Discriminant functions for sex estimation of modern Japanese skulls. J Forensic Legal Med 20:234–238

    Google Scholar 

  34. Gapert R, Black S, Last J (2009) Sex determination from the foramen magnum: discriminant function analysis in an eighteenth and nineteenth century British sample. Int J Legal Med 123:25–33

    PubMed  Google Scholar 

  35. de Paiva LAS, Segre M (2003) Sexing the human skull through the mastoid process. Rev Hosp Clin 58:15–20

    Google Scholar 

  36. Proença HHFA, Slavicek R, Cunha E, Sato S (2014) A 3D computerized tomography study of changes in craniofacial morphology of Portuguese skulls from the eighteenth century to the present. J Stomat Occ Med 7:33–45

    Google Scholar 

  37. Jantz RL, Jantz LM (2000) Secular change in craniofacial morphology. Am J Hum Biol 12:327–338

    PubMed  Google Scholar 

  38. Jonke E, Prossinger H, Bookstein FL, Schaefer K, Bernhard M, Freudenthaler JW (2007) Secular trends in the facial skull from the 19th century to the present, analyzed with geometric morphometrics. Am J Orthod Dentofac Orthop 132:63–70

    Google Scholar 

  39. Godde K (2015) Secular trends in cranial morphological traits: a socioeconomic perspective of change and sexual dimorphism in North Americans 1849–1960. Ann Hum Biol 42:255–261

    Google Scholar 

  40. Franklin D, Cardini A, Flavel A, Kuliukas A (2012) The application of traditional and geometric morphometric analyses for forensic quantification of sexual dimorphism: preliminary investigations in a western Australian population. Int J Legal Med 126:549–558

    PubMed  Google Scholar 

  41. Verhoff MA, Ramsthaler F, Krähahn J, Deml U, Gille RJ, Grabherr S, Thali MJ, Kreutz K (2008) Digital forensic osteology—possibilities in cooperation with the Virtopsy® project. Forensic Sci Int 174:152–156

    PubMed  Google Scholar 

  42. Stull KE, Tise ML, Ali Z, Fowler DR (2014) Accuracy and reliability of measurements obtained from computed tomography 3D volume rendered images. Forensic Sci Int 238:133–140

    PubMed  Google Scholar 

  43. Dedouit F, Telmon N, Costagliola R, Otal P, Florence LL, Joffre F, Rougé D (2007) New identification possibilities with postmortem multislice computed tomography. Int J Legal Med 121:507–510

    PubMed  Google Scholar 

  44. Bigoni L, Velemínská J, Brůžek J (2010) Three-dimensional geometric morphometric analysis of cranio-facial sexual dimorphism in a central European sample of known sex. Homo 61:16–32

    CAS  PubMed  Google Scholar 

  45. Kovarovic K, Aiello LC, Cardini A, Lockwood CA (2011) Discriminant function analyses in archaeology: are classification rates too good to be true? J Archaeol Sci 38:3006–3018

    Google Scholar 

  46. Weisensee KE, Jantz RL (2011) Secular changes in craniofacial morphology of the Portuguese using geometric morphometrics. Am J Phys Anthropol 145:548–559

    PubMed  Google Scholar 

  47. Hayashi K, Saitoh S, Mizoguchi I (2012) Morphological analysis of the skeletal remains of Japanese females from the Ikenohata-Shichikencho site. Eur J Orthod 34:575–581

    PubMed  Google Scholar 

  48. Wescott DJ, Jantz RL (2005) Assessing craniofacial secular change in American blacks and whites using geometric morphometry. In: Slice DE (ed) Modern morphometrics in physical anthropology. Kluwer Academic Publishers-Plenum Publishers, New York, pp 231–245

    Google Scholar 

  49. Jantz LM (2004) The meaning and consequences of morphological variation. In: The American Anthropological Association (AAA) (2003) Annual meeting on November 21, 2003. Illinois, Chicago, pp 1–17

    Google Scholar 

  50. Saini V, Srivastava R, Shamal SN, Singh TB, Pandey AK, Tripathi SK (2011) Sex determination using mandibular ramus flexure: a preliminary study on Indian population. J Forensic Legal Med 18:208–212

    Google Scholar 

  51. Galdames ICS, Matamala DAZ, Smith RL (2008) Evaluating accuracy and precision in morphologic traits for sexual dimorphism in malnutrition human skull: a comparative study. Int J Morphol 4:877–881

    Google Scholar 

  52. Oettlé AC, Pretorius E, Steyn M (2009) Geometric morphometric analysis of the use of mandibular gonial eversion in sex determination. Homo 60:29–43

    PubMed  Google Scholar 

  53. Stinson S (2005) Sex differences in environmental sensitivity during growth and development. Am J Phys Anthropol 28:123–147

    Google Scholar 

  54. Kozák P (2009) Dějiny tzv. Nového hřbitova. Příspěvek k raně novověké topografii města Opavy. In: Kouřilová D (ed) Sborník Národního památkového ústavu v Ostravě 2009. Opavsko: památky - historie - osobnosti. Národní památkový ústav, Ostrava, pp 93–111

  55. Kováčik P, Zezula M (2009) Opava–Pivovar (horní dvůr). Zjišťovací archeologický výzkum v místě stavebního záměru OSC Breda a Weinstein (akce 73/08). Archive of National Heritage Institute (NPÚ–ÚOP)

  56. Zezula M, Kozák P, Pankowská A, Plaštiaková M (2010) Opava. Areál pivovaru (tzv. horní dvůr), p. č. 128/7, 128/8. Zjišťovací výzkum. Archive of National Heritage Institute (NPÚ–ÚOP)

  57. von Cramon-Taubadel N, Frazier BC, Lahr MM (2007) The problem of assessing landmark error in geometric morphometrics: theory, methods, and modifications. Am J Phys Anthropol 134:24–35

    Google Scholar 

  58. Rohlf FJ, Slice D (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Biol 39:40–59

    Google Scholar 

  59. Klingenberg CP (2002) Developmental instability as a research tool: using patterns of fluctuating asymmetry to infer the developmental origins of morphological integration. In: Polak M (ed) Developmental instability: causes and consequences. Oxford University Press, New York, pp 427–442

    Google Scholar 

  60. Drake AG, Klingenberg CP (2008) The pace of morphological change: historical transformation of skull shape in St. Bernard dogs. Proc R Soc B 275:71–76

    PubMed  Google Scholar 

  61. Klingenberg CP (1996) Multivariate allometry. In: Marcus LF, Corti M, Loy A, Naylor GJP, Slice DE (eds) Advances in morphometrics. Springer, New York, pp 23–50

    Google Scholar 

  62. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    Google Scholar 

  63. Navega D, Coelho C, Vicente R, Ferreira MT, Wasterlain S, Cunha E (2014) AncesTrees: ancestry estimation with randomized decision trees. Int J Legal Med 129:1145–1153

    PubMed  Google Scholar 

  64. Van Vark GN, Schaafsma W (1992) Advances in the quantitative analysis of skeletal morphology. In: Sanders M, Katzhenberg M (eds) Skeletal biology of past peoples: research methods. Wiley-Liss, New York, pp 225–257

    Google Scholar 

  65. Green H, Curnoe D (2009) Sexual dimorphism in southeast Asian crania: a geometric morphometric approach. Homo 60:517–534

    PubMed  Google Scholar 

  66. Ferembach D, Schwidetzky I, Stloukal M (1980) Recommendations for age and sex diagnoses of skeletons. J Hum Evol 9:517–549

    Google Scholar 

  67. İşcan MY, Steyn M (2013) The human skeleton in forensic medicine, Third edn. Charles C Thomas Publisher, Springfield, Illinois

    Google Scholar 

  68. Steyn M, İşcan MY (1998) Sexual dimorphism in the crania and mandibles of South African whites. Forensic Sci Int 98:9–16

    CAS  PubMed  Google Scholar 

  69. Veyre-Goulet SA, Mercier C, Robin O, Guérin C (2008) Recent human sexual dimorphism study using cephalometric plots on lateral teleradiography and discriminant function analysis. J Forensic Sci 53:786–789

    PubMed  Google Scholar 

  70. Bejdová Š, Krajíček V, Velemínská J, Horák M, Velemínský P (2013) Changes in the sexual dimorphism of the human mandible during the last 1200 years in central Europe. HOMO-Journal of Comparative Human Biology 64:437–453

    Google Scholar 

  71. Lestrel PE, Kanazawa E, Wolfe CA (2011) Sexual dimorphism using elliptical Fourier analysis: shape differences in the craniofacial complex. Anthropol Sci 119:213–229

    Google Scholar 

  72. Tosi LL, Boyan BD, Boskey AL (2005) Does sex matter in musculoskeletal health? J Bone Joint Surg Am 87:1631–1647

    PubMed  Google Scholar 

  73. St Hoyme L, İşcan MY (1989) Determination of sex and race: accuracy and assumptions. In: İşcan MY, Kennedy KAR (eds) Reconstruction of life from the skeleton. A.R. Liss, New York, pp 53–94

    Google Scholar 

  74. Ulijaszek SJ, Mann N, Elton S (2012) Evolving human nutrition: implication for public health. Cambridge University Press, New York

    Google Scholar 

  75. Brázdil R, Pfister C, Wanner H, Storch HV, Luterbacher J (2005) Historical climatology in Europe—the state of the art. Clim Chang 70:363–430

    Google Scholar 

  76. Svoboda J, Vašků Z, Cílek V (2003) Velká kniha o klimatu zemí Koruny české. Czech Republic, Regia

    Google Scholar 

  77. Dofkova M, Kopriva V, Resova D, Rehurkova I, Ruprich J (2001) The development of food consumption in the Czech Republic after 1989. Public Health Nutr 4:999–1003

    CAS  PubMed  Google Scholar 

  78. Appleby AB (1980) Epidemics and famine in the little ice age. J Interdiscip Hist 10:643–663

    CAS  PubMed  Google Scholar 

  79. Beranová M (2005) Jídlo a pití v pravěku a ve středověku. Academia, nakladatelství Akademie věd České republiky, Praha

  80. Hetherington R, Reid RGB (2010) The climate connection: climate change and modern human evolution. Cambridge University Press, New York

    Google Scholar 

  81. Swaddle JP, Reierson GW (2002) Testosterone increases perceived dominance but not attractiveness in human males. Proc R Soc Lond B Biol Sci 269:2285–2289

    CAS  Google Scholar 

  82. Snyder JK, Kirkpatrick LA, Barrett HC (2008) The dominance dilemma: do women really prefer dominant mates? Pers Relatsh 15:425–444

    Google Scholar 

  83. Thayer ZM, Dobson SD (2010) Sexual dimorphism in chin shape: implications for adaptive hypotheses. Am J Phys Anthropol 143:417–425

    PubMed  Google Scholar 

  84. Andersson MB (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  85. Listi GA, Bassett HE (2006) Test of an alternative method for determining sex from the os coxae: applications for modern Americans. J Forensic Sci 51:248–252

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Archaia Olomouc o.p.s. (Peter Kováčik) for the access to the skeletal collection of the Opava cemetery and Martin Horák for managing the CT imaging in Na Bulovce Hospital. This work was financially supported by the Grant Agency of the Czech Republic under Grant No. 17-01878S and by the Ministry of Culture of the Czech Republic (DKRVO 2015/19, 2016/18 and 2017/18, 00023272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Šárka Bejdová.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent was obtained from all individual participants from the current Czech population included in the study. In the case of individuals from the Early Modern Age population (retrospective data), formal consent is not required.

This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bejdová, Š., Dupej, J., Krajíček, V. et al. Stability of upper face sexual dimorphism in central European populations (Czech Republic) during the modern age. Int J Legal Med 132, 321–330 (2018). https://doi.org/10.1007/s00414-017-1625-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-017-1625-3

Keywords

Navigation