Skip to main content

Advertisement

Log in

Evaluation of New Biomarkers in the Prediction of Malignant Mesothelioma in Subjects with Environmental Asbestos Exposure

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Introduction

The purpose of this study was to investigate the potential value of certain biomarkers in predicting the presence of malignant pleural mesothelioma (MPM) in individuals environmentally exposed to asbestos.

Methods

This prospective study investigated three groups; a control group composed of 41 healthy subjects, an asbestos exposure group consisting of 48 individuals, and a MPM group consisting of 42 patients. Serum levels of soluble mesothelin-related peptide (SMRP), thioredoxin-1 (TRX), epidermal growth factor receptor (EGFR), fibulin-3, syndecan-1 (SDC-1), and mesothelin were determined.

Results

Benign pleural plaques were present in 27 (58.3 %) of the individuals in the asbestos exposure group. The asbestos exposure group had significantly higher mean TRX, SMRP, and mesothelin levels compared to the control group (p = 0.023, p = 0.011, and p < 0.001, respectively). Compared to the asbestos exposure group, the MPM group had significantly higher mean EGFR, TRX, SMRP, and fibulin-3 levels (p = 0.041, p = 0.023, p = 0.002, and p = 0.001, respectively), and significantly lower mean SDC-1 levels (p = 0.002). Unlike the other biomarkers, SMRP and TRX levels increased in a graded fashion among the control, asbestos exposure, and MPM groups, respectively. Area under the curve values for SMRP and TRX were 0.86 and 0.72, respectively (95 % CI 0.79–0.92 and p < 0.001 for SMRP, and 95 % CI 0.62–0.81 and p < 0.001 for TRX). The cut-off value for SMRP was 0.62 nmol/l (sensitivity: 97.6 %, specificity: 68.9 %, positive predictive value (PPV): 56.2 %, and negative predictive value (NPV): 98.3 %) and for TRX was 156.67 ng/ml (sensitivity: 92.9 %, specificity: 77.6 %, PPV: 41.4 %, and NPV: 92.1 %). The combination of the biomarkers reached a sensitivity of 100 %, but had lower specificity (as high as 27.7 %).

Conclusions

Serum biomarkers may be helpful for early diagnosis of MPM in asbestos-exposed cases. SMRP and TRX increased in a graded fashion from the controls to asbestos exposure and MPM groups. These two seem to be the most valuable biomarkers for the diagnosis of MPM, both individually and in combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bayram M, Dongel I, Akbas A, Benli I, Akkoyunlu ME, Bakan ND (2014) Serum biomarkers in patients with mesothelioma and pleural plaques and healthy subjects exposed to naturally occurring asbestos. Lung 192(1):197–203

    Article  CAS  PubMed  Google Scholar 

  2. Santarelli L, Staffolani S, Strafella E et al (2015) Combined circulating epigenetic markers to improve mesothelin performance in the diagnosis of malignant mesothelioma. Lung Cancer 90(3):457–464

    Article  PubMed  Google Scholar 

  3. Maeda M, Hino O (2006) Molecular tumor markers for asbestos-related mesothelioma: serum diagnostic markers. Pathol Int 56(11):649–654

    Article  CAS  PubMed  Google Scholar 

  4. Robinson BW, Creaney J, Lake R, Nowak A, Musk AW, de Klerk N, Winzell P, Hellstrom KE, Hellstrom I (2005) Soluble mesothelin-related protein—a blood test for mesothelioma. Lung Cancer 49(Suppl 1):S109–S111

    Article  PubMed  Google Scholar 

  5. Yamada S, Tabata C, Tabata R, Fukuoka K, Nakano T (2011) Clinical significance of pleural effusion mesothelin in malignant pleural mesothelioma. Clin Chem Lab Med 49(10):1721–1726

    Article  CAS  PubMed  Google Scholar 

  6. Canessa PA, Franceschini MC, Ferro P et al (2013) Evaluation of soluble mesothelin-related peptide as a diagnostic marker of malignant pleural mesothelioma effusions: its contribution to cytology. Cancer Invest 31(1):43–50

    Article  PubMed  Google Scholar 

  7. Rodriguez Portal JA, Rodriguez Becerra E, Rodriguez Rodriguez D et al (2009) Serum levels of soluble mesothelin-related peptides in malignant and nonmalignant asbestos-related pleural disease: relation with past asbestos exposure. Cancer Epidemiol Biomarkers Prev 18(2):646–650

    Article  CAS  PubMed  Google Scholar 

  8. Arteaga CL (2002) Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist 7(Suppl 4):31–39

    Article  CAS  PubMed  Google Scholar 

  9. Schildgen V, Pabst O, Tillmann RL et al (2015) Low frequency of EGFR mutations in pleural mesothelioma patients, Cologne, Germany. Appl Immunohistochem Mol Morphol 23(2):118–125

    Article  CAS  PubMed  Google Scholar 

  10. Gaafar R, Bahnassy A, Abdelsalam I et al (2010) Tissue and serum EGFR as prognostic factors in malignant pleural mesothelioma. Lung Cancer 70(1):43–50

    Article  PubMed  Google Scholar 

  11. Argraves WS, Greene LM, Cooley MA, Gallagher WM (2003) Fibulins: physiological and disease perspectives. EMBO Rep 4(12):1127–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Marmorstein LY (2010) Focus on molecules: fibulin-3 (EFEMP1). Exp Eye Res 90(3):374–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mundt F, Heidari-Hamedani G, Nilsonne G, Metintas M, Hjerpe A, Dobra K (2014) Diagnostic and prognostic value of soluble syndecan-1 in pleural malignancies. Biomed Res Int 2014:419853

    Article  PubMed  PubMed Central  Google Scholar 

  14. Todosi AM, Gavrilescu MM, Anitei GM, Filip B, Scripcariu V (2012) Colon cancer at the molecular level–usefulness of epithelial-mesenchymal transition analysis. Rev Med Chir Soc Med Nat Iasi 116(4):1106–1111

    PubMed  Google Scholar 

  15. Zong F, Fthenou E, Mundt F et al (2011) Specific syndecan-1 domains regulate mesenchymal tumor cell adhesion, motility and migration. PLoS ONE 6(6):e14816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sezgi C, Taylan M, Sen HS et al (2014) Oxidative status and acute phase reactants in patients with environmental asbestos exposure and mesothelioma. Sci World J 2014:902748

    Article  Google Scholar 

  17. Cunningham GM, Roman MG, Flores LC et al (2015) The paradoxical role of thioredoxin on oxidative stress and aging. Arch Biochem Biophys 576:32–38

    Article  CAS  PubMed  Google Scholar 

  18. Tabata C, Terada T, Tabata R et al (2013) Serum thioredoxin-1 as a diagnostic marker for malignant peritoneal mesothelioma. J Clin Gastroenterol 47(1):e7–e11

    Article  CAS  PubMed  Google Scholar 

  19. Ciardiello F, Tortora G (2001) A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 7(10):2958–2970

    CAS  PubMed  Google Scholar 

  20. Mitsudomi T, Yatabe Y (2010) Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J 277(2):301–308

    Article  CAS  PubMed  Google Scholar 

  21. Trupiano JK, Geisinger KR, Willingham MC et al (2004) Diffuse malignant mesothelioma of the peritoneum and pleura, analysis of markers. Mod Pathol 17(4):476–481

    Article  PubMed  Google Scholar 

  22. Kovac V, Dodic-Fikfak M, Arneric N, Dolzan V, Franko A (2015) Fibulin-3 as a biomarker of response to treatment in malignant mesothelioma. Radiol Oncol 49(3):279–285

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kaya H, Demir M, Taylan M et al (2015) Fibulin-3 as a diagnostic biomarker in patients with malignant mesothelioma. Asian Pac J Cancer Prev 16(4):1403–1407

    Article  PubMed  Google Scholar 

  24. Pass HI, Levin SM, Harbut MR et al (2012) Fibulin-3 as a blood and effusion biomarker for pleural mesothelioma. N Engl J Med 367(15):1417–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saunders S, Jalkanen M, O’Farrell S, Bernfield M (1989) Molecular cloning of syndecan, an integral membrane proteoglycan. J Cell Biol 108(4):1547–1556

    Article  CAS  PubMed  Google Scholar 

  26. Orosz Z, Kopper L (2001) Syndecan-1 expression in different soft tissue tumours. Anticancer Res 21(1):733–737

    CAS  PubMed  Google Scholar 

  27. Kumar-Singh S, Jacobs W, Dhaene K et al (1998) Syndecan-1 expression in malignant mesothelioma: correlation with cell differentiation, WT1 expression, and clinical outcome. J Pathol 186(3):300–305

    Article  CAS  PubMed  Google Scholar 

  28. Szatmari T, Dobra K (2013) The role of syndecan-1 in cellular signaling and its effects on heparan sulfate biosynthesis in mesenchymal tumors. Front Oncol 3:310

    Article  PubMed  PubMed Central  Google Scholar 

  29. Metintas M, Metintas S, Ak G et al (2008) Epidemiology of pleural mesothelioma in a population with non-occupational asbestos exposure. Respirology 13(1):117–121

    Article  PubMed  Google Scholar 

  30. Roggli VL, Sharma A, Butnor KJ, Sporn T, Vollmer RT (2002) Malignant mesothelioma and occupational exposure to asbestos: a clinicopathological correlation of 1445 cases. Ultrastruct Pathol 26(2):55–65

    Article  PubMed  Google Scholar 

  31. Kamp DW, Israbian VA, Preusen SE, Zhang CX, Weitzman SA (1995) Asbestos causes DNA strand breaks in cultured pulmonary epithelial cells: role of iron-catalyzed free radicals. Am J Physiol 268(3 Pt 1):L471–L480

    CAS  PubMed  Google Scholar 

  32. Metintas M, Ozdemir N, Solak M et al (1994) Chromosome analysis in pleural effusions. Efficiency of this method in the differential diagnosis of pleural effusions. Respiration 61(6):330–335

    Article  CAS  PubMed  Google Scholar 

  33. Tomasetti M, Amati M, Nocchi L et al (2011) Asbestos exposure affects poly (ADP-ribose) polymerase-1 activity: role in asbestos-induced carcinogenesis. Mutagenesis 26(5):585–591

    Article  CAS  PubMed  Google Scholar 

  34. Pelclova D, Fenclova Z, Kacer P, Kuzma M, Navratil T, Lebedova J (2008) Increased 8-isoprostane, a marker of oxidative stress in exhaled breath condensate in subjects with asbestos exposure. Ind Health 46(5):484–489

    Article  CAS  PubMed  Google Scholar 

  35. Powis G, Montfort WR (2001) Properties and biological activities of thioredoxins. Annu Rev Biophys Biomol Struct 30:421–455

    Article  CAS  PubMed  Google Scholar 

  36. Thompson JK, Westbom CM, MacPherson MB et al (2014) Asbestos modulates thioredoxin-thioredoxin interacting protein interaction to regulate inflammasome activation. Part Fibre Toxicol 11:24

    Article  PubMed  PubMed Central  Google Scholar 

  37. Park EK, Thomas PS, Creaney J, Johnson AR, Robinson BW, Yates DH (2010) Factors affecting soluble mesothelin related protein levels in an asbestos-exposed population. Clin Chem Lab Med 48(6):869–874

    Article  CAS  PubMed  Google Scholar 

  38. Cui A, Jin XG, Zhai K, Tong ZH, Shi HZ (2014) Diagnostic values of soluble mesothelin-related peptides for malignant pleural mesothelioma: updated meta-analysis. BMJ Open 4(2):e004145

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hollevoet K, Reitsma JB, Creaney J et al (2012) Serum mesothelin for diagnosing malignant pleural mesothelioma: an individual patient data meta-analysis. J Clin Oncol 30(13):1541–1549

    Article  PubMed  PubMed Central  Google Scholar 

  40. Scherpereel A, Grigoriu B, Conti M et al (2006) Soluble mesothelin-related peptides in the diagnosis of malignant pleural mesothelioma. Am J Respir Crit Care Med 173(10):1155–1160

    Article  CAS  PubMed  Google Scholar 

  41. Fukuoka K, Kuribayashi K, Yamada S, Tamura K, Tabata C, Nakano T (2013) Combined serum mesothelin and carcinoembryonic antigen measurement in the diagnosis of malignant mesothelioma. Mol Clin Oncol 1(6):942–948

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cristaudo A, Bonotti A, Simonini S et al (2011) Combined serum mesothelin and plasma osteopontin measurements in malignant pleural mesothelioma. J Thorac Oncol 6(9):1587–1593

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by Dicle University Scientific Project Unit (DUBAP). Project number was 14-TF-48.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melike Demir.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, M., Kaya, H., Taylan, M. et al. Evaluation of New Biomarkers in the Prediction of Malignant Mesothelioma in Subjects with Environmental Asbestos Exposure. Lung 194, 409–417 (2016). https://doi.org/10.1007/s00408-016-9868-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-016-9868-1

Keywords

Navigation