Skip to main content
Log in

The functional role of the pharyngeal plexus in vocal cord innervation in humans

  • Head and Neck
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Classical understanding of the function of the pharyngeal plexus in humans is that it relies on both motor branches for innervation of the majority of pharyngeal muscles and sensory branches for the pharyngeal wall sensation. To date there has been no reported data on the role of the pharyngeal plexus in vocal cord innervation. The aim of this study is to evaluate whether or not the plexus pharyngeus contributes to the innervation of the vocal cords. One hundred twenty-five sides from 79 patients (59 female, 20 male) undergoing thyroid surgery with intraoperative neuromonitoring were prospectively evaluated. While vocal cord function was evaluated with endotracheal tube surface electrodes, cricothyroid and cricopharyngeal muscle electromyographic recordings were obtained with a pair of needle electrodes. The ipsilateral pharyngeal plexus, external branch of the superior laryngeal nerve, and recurrent laryngeal nerve were stimulated with a monopolar probe at 1 mA. With stimulation of the plexus pharyngeus on 125 operated sides, positive electromyographic waveforms were detected from five ipsilateral vocal cords (accounting for 3.2% of all vocal cords monitored and 6.3% of patients). The mean EMG amplitude of the vocal cords with stimulation of the plexus pharyngeus was 147 ± 35.5 μV (range 110–203). In one case, the long latency time of 19.8 ms correlated with innervation by the glottic closure reflex pathway. The short latencies seen in the other four cases [3.9 ± 1.1 ms (range 3.2–5.5)] correlated with direct innervation. In some cases, the plexus pharyngeus may contribute to vocal cord innervation by reflex or direct innervation patterns in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rubin AD, Sataloff RT (2008) Vocal fold paresis and paralysis: what the thyroid surgeon should know. Surg Oncol Clin N Am 17:175–196. doi:10.1016/j.soc.2007.10.007

    Article  PubMed  Google Scholar 

  2. Maranillo E, Leon X, Orus C, Quer M, Sanudo JR (2005) Variability in nerve patterns of the adductor muscle group supplied by the recurrent laryngeal nerve. Laryngoscope 115:358–362. doi:10.1097/01.mlg.0000154745.78808.02

    Article  PubMed  Google Scholar 

  3. Martin-Oviedo C, Maranillo E, Lowy-Benoliel A et al (2011) Functional role of human laryngeal nerve connections. Laryngoscope 121:2338–2343. doi:10.1002/lary.22340

    Article  PubMed  Google Scholar 

  4. Sanudo JR, Maranillo E, Leon X, Mirapeix RM, Orus C, Quer M (1999) An anatomical study of anastomoses between the laryngeal nerves. Laryngoscope 109:983–987

    Article  CAS  PubMed  Google Scholar 

  5. Domer AS, Kuhn MA, Belafsky PC (2013) Neurophysiology and clinical implications of the laryngeal adductor reflex. Curr Otorhinolaryngol Rep 1:178–182. doi:10.1007/s40136-013-0018-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Suzuki M, Sasaki CT (1977) Effect of various sensory stimuli on reflex laryngeal adduction. Ann Otol Rhinol Laryngol 86:30–36

    Article  CAS  PubMed  Google Scholar 

  7. Kitagawa J, Nakagawa K, Hasegawa M et al (2009) Facilitation of reflex swallowing from the pharynx and larynx. J Oral Sci 51:167–171

    Article  PubMed  Google Scholar 

  8. Shaker R, Medda BK, Ren J, Jaradeh S, Xie P, Lang IM (1998) Pharyngoglottal closure reflex: identification and characterization in a feline model. Am J Physiol 275:G521–G525

    CAS  PubMed  Google Scholar 

  9. Matsuzaki H, Paskhover B, Sasaki CT (2014) Contribution of the pharyngeal plexus to vocal cord adduction. Laryngoscope 124:516–521. doi:10.1002/lary.24345

    Article  PubMed  Google Scholar 

  10. Paskhover B, Wadie M, Sasaki CT (2014) The pharyngeal plexus-mediated glottic closure response and associated neural connections of the plexus. JAMA Otolaryngol Head Neck Surg 140:1056–1060. doi:10.1001/jamaoto.2014.2440

    Article  PubMed  Google Scholar 

  11. Mu L (2007) Sanders I (2007) Neuromuscular specializations within human pharyngeal constrictor muscles. Ann Otol Rhinol Laryngol 116:604–617

    Article  PubMed  Google Scholar 

  12. Mu L, Sanders I (2000) Sensory nerve supply of the human oro- and laryngopharynx: preliminary study. Anat Rec 258:406–420

    Article  CAS  PubMed  Google Scholar 

  13. Sritharan N, Chase M, Kamani D, Randolph M, Randolph GW (2015) The vagus nerve, recurrent laryngeal nerve, and external branch of the superior laryngeal nerve have unique latencies allowing for intraoperative documentation of intact neural function during thyroid surgery. Laryngoscope 125:E84–E89. doi:10.1002/lary.24781

    Article  PubMed  Google Scholar 

  14. Randolph GW, Dralle H, Abdullah H et al (2011) Electrophysiologic recurrent laryngeal nerve monitoring during thyroid and parathyroid surgery: international standards guideline statement. Laryngoscope 121(Suppl 1):S1–S16. doi:10.1002/lary.21119

    Article  PubMed  Google Scholar 

  15. Uludag M, Aygun N, Isgor A (2016) Innervation of the human cricopharyngeal muscle by the recurrent laryngeal nerve and external branch of the superior laryngeal nerve. Langenbecks Arch Surg. doi:10.1007/s00423-016-1376-5

    Google Scholar 

  16. Barczyński M, Randolph GW, Cernea CR et al (2013) External branch of the superior laryngeal nerve monitoring during thyroid and parathyroid surgery: international Neural Monitoring Study Group standards guideline statement. Laryngoscope 123(Suppl 4):S1–S14. doi:10.1002/lary.24301

    Article  PubMed  Google Scholar 

  17. Kitagawa J, Shingai T, Takahashi Y, Yamada Y (2002) Pharyngeal branch of the glossopharyngeal nerve plays a major role in reflex swallowing from the pharynx. Am J Physiol Regul Integr Comp Physiol 282:R1342–R1347. doi:10.1152/ajpregu.00556.2001

    Article  CAS  PubMed  Google Scholar 

  18. Sasaki CT, Suzuki M (1976) Laryngeal reflexes in cat, dog, and man. Arch Otolaryngol 102:400–402

    Article  CAS  PubMed  Google Scholar 

  19. Sasaki CT, Jassin B, Kim YH, Hundal J, Rosenblatt W, Ross DA (2003) Central facilitation of the glottis closure reflex in humans. Ann Otol Rhinol Laryngol 112:293–297

    Article  PubMed  Google Scholar 

  20. Ludlow CL, Van Pelt F, Koda J (1992) Characteristics of late responses to superior laryngeal nerve stimulation in humans. Ann Otol Rhinol Laryngol 101(2 Pt 1):127–134

    Article  CAS  PubMed  Google Scholar 

  21. Sakamoto Y (2009) Classification of pharyngeal muscles based on innervations from glossopharyngeal and vagus nerves in human. Surg Radiol Anat 31:755–761. doi:10.1007/s00276-009-0516-9

    Article  PubMed  Google Scholar 

  22. Uludag M, Aygun N, Isgor A (2016) Motor function of the recurrent laryngeal nerve: sometimes motor fibers are also located in the posterior branch. Surgery 160:153–160. doi:10.1016/j.surg.2016.02.003

    Article  PubMed  Google Scholar 

  23. Mu L, Sanders I (1998) Neuromuscular organization of the human upper esophageal sphincter. Ann Otol Rhinol Laryngol 107:370–377

    Article  CAS  PubMed  Google Scholar 

  24. Sakamoto Y (2013) Interrelationships between the innervations from the laryngeal nerves and the pharyngeal plexus to the inferior pharyngeal constrictor. Surg Radiol Anat 35:721–728. doi:10.1007/s00276-013-1102-8

    Article  PubMed  Google Scholar 

  25. Bergman RA, Thompson SA, Afifi AK, Saadeh FA (1988) Compendium of human anatomic variation: text, atlas, and world literature. Urban & Schwarzenberg, Baltimore

    Google Scholar 

  26. Potenza AS, Phelan EA, Cernea CR et al (2013) Normative intra-operative electrophysiologic waveform analysis of superior laryngeal nerve external branch and recurrent laryngeal nerve in patients undergoing thyroid surgery. World J Surg 37:2336–2342. doi:10.1007/s00268-013-2148-9

    Article  PubMed  Google Scholar 

  27. Barczyński M, Konturek A, Stopa M, Honowska A, Nowak W (2012) Randomized controlled trial of visualization versus neuromonitoring of the external branch of the superior laryngeal nerve during thyroidectomy. World J Surg 36:1340–1347. doi:10.1007/s00268-012-1547-7

    Article  PubMed  PubMed Central  Google Scholar 

  28. Morton RP, Whitfield P, Al-Ali S (2006) Anatomical and surgical considerations of the external branch of the superior laryngeal nerve: a systematic review. Clin Otolaryngol 31:368–374. doi:10.1111/j.1749-4486.2006.01266.x

    Article  CAS  PubMed  Google Scholar 

  29. Paskhover B, Wadie M, Sasaki CT (2015) Thyroarytenoid cross-innervation by the external branch of the superior laryngeal nerve in the porcine model. Laryngoscope 125:177–179. doi:10.1002/lary.24888

    Article  PubMed  Google Scholar 

  30. Hydman J (2008) Mattsson P (2008) Collateral reinnervation by the superior laryngeal nerve after recurrent laryngeal nerve injury. Muscle Nerve 38:1280–1289. doi:10.1002/mus.21124

    Article  PubMed  Google Scholar 

  31. Chang PY, Wu CW, Chen HY et al (2014) Influence of intravenous anesthetics on neuromonitoring of the recurrent laryngeal nerve during thyroid surgery. Kaohsiung J Med Sci 30:499–503. doi:10.1016/j.kjms.2014.05.009

    Article  PubMed  Google Scholar 

  32. Savoia G, Esposito C, Belfiore F, Amantea B, Cuocolo R (1988) Propofol infusion and auditory evoked potentials. Anaesthesia 43(Suppl):46–49

    Article  PubMed  Google Scholar 

  33. Han YD, Liang F, Chen P (2015) Dosage effect of rocuronium on intraoperative neuromonitoring in patients undergoing thyroid surgery. Cell Biochem Biophys 71:143–146. doi:10.1007/s12013-014-0176-1

    Article  CAS  PubMed  Google Scholar 

  34. Lu IC, Chang PY, Hsu HT et al (2013) A comparison between succinylcholine and rocuronium on the recovery profile of the laryngeal muscles during intraoperative neuromonitoring of the recurrent laryngeal nerve: a prospective porcine model. Kaohsiung J Med Sci 29:484–487. doi:10.1016/j.kjms.2013.01.002

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Uludag.

Ethics declarations

All authors have agreed to the manuscript’s content. All authors warrant that the submitted article is original, and has not been submitted to another journal for publication, has not been published elsewhere, or if published in whole or in part, all permissions were granted for publication in Langenbeck’s Archives of Surgery.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors. This prospective study was approved by the Institutional Review Board of Sisli Hamidiye Etfal Training and Research Hospital.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uludag, M., Aygun, N. & Isgor, A. The functional role of the pharyngeal plexus in vocal cord innervation in humans. Eur Arch Otorhinolaryngol 274, 1121–1128 (2017). https://doi.org/10.1007/s00405-016-4369-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-016-4369-7

Keywords

Navigation