Skip to main content
Log in

Immunomodulation of tissue-engineered transplants: in vivo bone generation from methylprednisolone-stimulated chondrocytes

  • Miscellaneous
  • Published:
European Archives of Oto-Rhino-Laryngology and Head & Neck Aims and scope Submit manuscript

Abstract

Subcutaneously implanted, in vitro engineered tissue is generally affected by the immune system of the host even in autogenous transplantation. The aim of this study was to investigate immunomodulation of subcutaneously implanted tissue-engineered cartilage transplants by intramuscular methylprednisolone application. Transplants consisted of auricular rabbit chondrocytes, polylactide-polyglycolide co-polymer fleeces and species-specific fibrin or agarose. The transplants were subcutaneously implanted in the ridge. Thereafter, animals were separated into two groups, one with and one without methylprednisolone treatment. The specimens were histologically investigated after 6 and 12 weeks. Fleece fiber degradation was complete after 12 weeks, and all transplants showed areas of calcification. The corticosteroid-treated group presented pronounced trabecular bone generation without fibrous tissue infiltration. The untreated group showed sporadic islets of calcification without coherent bone formation, and adjacent fibrous tissue had infiltrated the transplants. Native controls and corticoid-treated transplants did not exhibit bone generation or signs of fibrous tissue infiltration. This study found that immunomodulation by intramuscular methylprednisolone application protects tissue-engineered autogenous chondrocyte transplants from fibrous tissue infiltration and induces trabecular bone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

References

  1. Cao Y, Rodriguez A, Vacanti M, Ibarra C, Arevalo C, Vacanti CA (1998) Comparative study of the use of poly, calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed 9:475–487

    CAS  PubMed  Google Scholar 

  2. Haisch A, Groger A, Radke C, Ebmeyer J, Sudhoff H, Grasnick G, Jahnke V, Burmester GR, Sittinger M (2000) Macroencapsulation of human cartilage implants: pilot study with polyelectrolyte complex membrane encapsulation. Biomaterials 21:1561–1566

    Article  CAS  PubMed  Google Scholar 

  3. Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R (1994) Biodegradable polymer scaffolds for tissue engineering. Biotechnology N Y 12:689–693

    CAS  PubMed  Google Scholar 

  4. Sittinger M, Reitzel D, Dauner M, Hierlemann H, Hammer C, Kastenbauer E, Planck H, Burmester GR, Bujia J (1996) Resorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes. J Biomed Mater Res 33:57–63

    Article  CAS  PubMed  Google Scholar 

  5. Sittinger M, Schultz O, Keyszer G, Minuth WW, Burmester GR (1997) Artificial tissues in perfusion culture. Artif Organs 20:57–62

    CAS  PubMed  Google Scholar 

  6. Desjardins MR, Hurtig MB, Palmer NC (1991) Heterotopic transfer of fresh and cryopreserved autogenous articular cartilage in the horse. Vet Surg 20:434–445

    CAS  PubMed  Google Scholar 

  7. Puelacher WC, Mooney D, Langer R, Upton J, Vacanti JP, Vacanti CA (1994) Design of nasoseptal cartilage replacements synthesized from biodegradable polymers and chondrocytes. Biomaterials 15:774–778

    CAS  PubMed  Google Scholar 

  8. Haisch A, Klaring S, Groger A, Gebert C, Sittinger M (2002) A tissue-engineering model for the manufacture of auricular-shaped cartilage implants. Eur Arch Otorhinolaryngol 259:316–321

    PubMed  Google Scholar 

  9. Duda GN, Haisch A, Endres M, Gebert C, Schroeder D, Hoffmann JE, Sittinger M (2000) Mechanical quality of tissue engineered cartilage: results after 6 and 12 weeks in vivo. J Biomed Mater Res 53:673–677

    CAS  PubMed  Google Scholar 

  10. Sittinger M, Bujia J, Rotter N, Reitzel D, Minuth WW, Burmester GR (1996) Tissue engineering and autologous transplant formation: practical approaches with bioresorbable biomaterials and new cell culture techniques. Biomaterials 17:237–242

    Article  CAS  PubMed  Google Scholar 

  11. Sims CD, Butler PE, Cao YL, Casanova R, Randolph MA, Black A, Vacanti CA, Yaremchuk MJ (1998) Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plast Reconstr Surg 101:1580–1585

    CAS  PubMed  Google Scholar 

  12. Rowley JA, Madlambayan G. Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53

    Article  CAS  PubMed  Google Scholar 

  13. Isogai N, Landis W, Kim TH, Gerstenfeld LC, Upton J, Vacanti JP (1999) Formation of phalanges and small joints by tissue-engineering. J Bone Joint Surg Am 81:303–316

    PubMed  Google Scholar 

  14. Breitbard AS (1998) Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast Reconstr Surg 101:567–576

    PubMed  Google Scholar 

  15. Butler PE (1998) Cell transplantation from limb allografts. Plast Reconstr Surg 102:161–170

    CAS  PubMed  Google Scholar 

  16. Puelacher WC (1996) Femoral shaft reconstruction using tissue-engineered growth of bone. Int J Oral Maxillofac Surg 25:223–228

    CAS  PubMed  Google Scholar 

  17. Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501–1514

    Google Scholar 

  18. Ramoshebi LN, Ripamonti U (2000) Osteogenic protein-1, a bone morphogenetic protein, induces angiogenesis in the chick chorioallantoic membrane and synergizes with basic fibroblast growth factor and transforming growth factor-beta1. Anat Rec 259:97–107

    Article  CAS  PubMed  Google Scholar 

  19. Jaiswal N (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    CAS  PubMed  Google Scholar 

  20. Kaps C, Bramlage C, Smolian H, Haisch A, Ungethum U, Burmester GR, Sittinger M, Gross G, Haupl T (2002) Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction. Arthritis Rheum 46:149–162

    Article  CAS  PubMed  Google Scholar 

  21. Viljanen VV, Lindholm TS (1993) Heterotopic osteoinduction in a rat membrane-isolated latissimus dorsi island flap. A pilot study. Ann Chir Gynaecol [Suppl] 207:55–62

    Google Scholar 

  22. Mow VC, Ratcliffe A, Rosenwasser MP, Buckwalter JA (1991) Experimental studies on repair of large osteochondral defects at a high weight bearing area of the knee joint: a tissue engineering study. J Biomech Eng 113:198–207

    CAS  PubMed  Google Scholar 

  23. Dorfman J, Duong M, Zibaitis A, Pelletier MP, Shum-Tim D, Li C, Chiu RC (1998) Myocardial tissue engineering with autologous myoblast implantation. J Thorac Cardiovasc Surg 116:744–751

    CAS  PubMed  Google Scholar 

  24. Fann PC, Hartman DF, Goode RL (1993) Pharmacologic and surgical enhancement of composite graft survival. Arch Otolaryngol Head Neck Surg 119:313–319

    CAS  PubMed  Google Scholar 

  25. Piekoszewski W, Chow FS, Jusko WJ (1994) Pharmacokinetic and pharmacodynamic effects of coadministration of methylprednisolone and tacrolimus in rabbits. J Pharmacol Exp Ther 269:103–109

    CAS  PubMed  Google Scholar 

  26. Yamamoto T, Irisa T, Sugioka Y, Sueishi K (1997) Effects of pulse methylprednisolone on bone and marrow tissues. Arthritis Rheum 40:2055–2064

    CAS  PubMed  Google Scholar 

  27. Williams KA, Grutzmacher RD, Roussel TJ, Coster DJ (1985) A comparison of the effects of topical cyclosporine and topical steroid on rabbit corneal allograft rejection. Transplantation 39:242–244

    CAS  PubMed  Google Scholar 

  28. Ho ML, Chang JK, Wang GJ (1995) Antinflammatory drug effects on bone repair and remodeling in rabbits. Clin Orthop 313:270–278

    PubMed  Google Scholar 

  29. Moell C, Aronson AS, Selvik G (1988) Growth in rabbits during alternate-day cortisone injections: near normal growth on days without cortisone. Acta Paediatr Scand 77:693–698

    CAS  PubMed  Google Scholar 

  30. Tam CS, Cruickshank B, Swinson DR, Anderson W, Little HA(1979) The response of bone apposition rate to some nonphysiologic conditions. Metabolism 28:751–755

    CAS  PubMed  Google Scholar 

  31. Lyritis G, Papadopoulou Z, Nikiforidis P, Batrinos M, Varonos D (1975) Effects of cortisone and an anabolic steroid upon plasma hydroxyproline during fracture healing in rabbits. Acta Orthop Scand 46:25–30

    CAS  PubMed  Google Scholar 

  32. Orwin JF (1991) Use of the uncemented bipolar endoprosthesis for the treatment of steroid-induced osteonecrosis of the hip in renal transplantation patients. J Arthroplasty 6:1–9

    CAS  PubMed  Google Scholar 

  33. Prisell PT (1997) Insulin-like growth factor I increases bone formation in old or corticosteroid trated rats. Acta Orthop Scand 68:586–592

    CAS  PubMed  Google Scholar 

  34. Brantus JF, Meunier PJ (1998) Effects of intravenous etidronate and oral corticosteroids in fibrodysplasia ossificans progressiva. Clin Orthop 346:117–120

    PubMed  Google Scholar 

  35. Rodriguez Rodriguez R, Ontanilla Lopez A, Rodriguez Rodriguez C, Herrera Silva J, Echevarria Moreno M, Martinez Diestre MD (1991) Bilateral ossification of the earlobes. Addisonian crisis in the postoperative period. Rev Esp Anestesiol Reanim 38:391–392

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the DFG (German Research Foundation) for the grant Ha 2721-1-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Haisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haisch, A., Wanjura, F., Radke, C. et al. Immunomodulation of tissue-engineered transplants: in vivo bone generation from methylprednisolone-stimulated chondrocytes. Eur Arch Otorhinolaryngol 261, 216–224 (2004). https://doi.org/10.1007/s00405-003-0646-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-003-0646-3

Keywords

Navigation