Skip to main content

Advertisement

Log in

The future therapy of endometrial cancer: microRNA’s functionality, capability, and putative clinical application

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Endometrial cancer (EC) therapy is characterized by the heterogeneity of EC subtypes resulting in unclear clinical behavior as well as in unsatisfactory treatment options. The available biomarkers, such as cellular tumor antigen p53 (TP53), phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase (PTEN), and phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) genes alone might not be sufficient, and thus, new predictive and prognostic biomarkers are urgently required. The biomolecule class of microRNA represents a group of endogenously expressed regulatory factors primarily involved in control of pivotal cancer-related mechanisms including cell cycle, proliferation, apoptosis, and metastasis. Here, we review the current state of science regarding microRNA functionality in EC progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Purdie DM, Green AC (2001) Epidemiology of endometrial cancer. Best Pract Res Clin Obstet Gynaecol 15:341–354

    Article  CAS  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29

    Article  PubMed  Google Scholar 

  3. Pitson G, Colgan T, Levin W, Lockwood G, Manchul L, Milosevic M, Murphy J, Fyles A (2002) Stage II endometrial carcinoma: prognostic factors and risk classification in 170 patients. Int J Radiat Oncol Biol Phys 53:862–867

    Article  PubMed  Google Scholar 

  4. Sehouli J, Koensgen D, Oskay-Ozcelik G, Mustea A (2008) New aspects of adjuvant therapy in endometrial cancer: current standards and future directions. Crit Rev Oncol Hematol 67:204–212

    Article  PubMed  Google Scholar 

  5. Mustea A, Koensgen D, Belau A, Sehouli J, Lichtenegger W, Schneidewind L, Sommer H, Markmann S, Scharf JP, Ehmke M, Ledwon P, Braicu I, Zygmunt M, Koehler G (2013) Adjuvant sequential chemoradiation therapy in high-risk endometrial cancer: results of a prospective, multicenter phase-II study of the NOGGO (North-Eastern German Society of Gynaecological Oncology). Cancer Chemother Pharmacol 72:975–983

    Article  CAS  PubMed  Google Scholar 

  6. Creasman WT, Kohler MF, Odicino F, Maisonneuve P, Boyle P (2004) Prognosis of papillary serous, clear cell, and grade 3 stage I carcinoma of the endometrium. Gynecol Oncol 95:593–596

    Article  PubMed  Google Scholar 

  7. Morrow CP, Bundy BN, Kurman RJ, Creasman WT, Heller P, Homesley HD, Graham JE (1991) Relationship between surgical-pathological risk factors and outcome in clinical stage I and II carcinoma of the endometrium: a Gynecologic Oncology Group study. Gynecol Oncol 40:55–65

    Article  CAS  PubMed  Google Scholar 

  8. Rose PG (1996) Endometrial carcinoma. N Engl J Med 335:640–649

    Article  CAS  PubMed  Google Scholar 

  9. Bokhman JV (1983) Two pathogenetic types of endometrial carcinoma. Gynecol Oncol 15:10–17

    Article  CAS  PubMed  Google Scholar 

  10. Felix AS, Weissfeld JL, Stone RA, Bowser R, Chivukula M, Edwards RP, Linkov F (2010) Factors associated with type I and type II endometrial cancer. Cancer Causes Control 21:1851–1856

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schultheis AM, Martelotto LG, DeFilippo MR, Piscuglio S, Ng CK, Hussein YR, Reis-Filho JS, Soslow RA, Weigelt B (2015) TP53 mutational spectrum in endometrioid and serous endometrial cancers. Int J Gynecol Pathol. doi:10.1097/PGP.0000000000000243 (in press)

    Google Scholar 

  12. Marchio C, De Filippo MR, Ng CK, Piscuoglio S, Soslow RA, Reis-Filho JS, Weigelt B (2015) PIKing the type and pattern of PI3K pathway mutations in endometrioid endometrial carcinomas. Gynecol Oncol 137:321–328

    Article  CAS  PubMed  Google Scholar 

  13. Chang Y, Huang H, Yeh K, Chang J (2016) Genetic alterations in endometrial cancer by targeted next-generation sequencing. Exp Mol Pathol 100:8–12

    Article  CAS  PubMed  Google Scholar 

  14. O’Hara AJ, Bell DW (2012) The genomics and genetics of endometrial cancer. Adv Genom Genet 2012:33–47

    Google Scholar 

  15. Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, Benz CC, Yau C, Laird PW, Ding L, Zhang W, Mills GB, Kucherlapati R, Mardis ER, Levine DA (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497:67–73

    Article  PubMed  Google Scholar 

  16. Hwang H, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94:776–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jovanovic M, Hengartner MO (2006) miRNAs and apoptosis: RNAs to die for. Oncogene 25:6176–6187

    Article  CAS  PubMed  Google Scholar 

  18. Baranwal S, Alahari SK (2010) miRNA control of tumor cell invasion and metastasis. Int J Cancer 126:1283–1290

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Adam L, Zhong M, Choi W, Qi W, Nicoloso M, Arora A, Calin G, Wang H, Siefker-Radtke A, McConkey D, Bar-Eli M, Dinney C (2009) miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res 15:5060–5072

    Article  CAS  PubMed  Google Scholar 

  20. Acunzo M, Romano G, Wernicke D, Croce CM (2015) MicroRNA and cancer—a brief overview. Adv Biol Regul 57:1–9

    Article  CAS  PubMed  Google Scholar 

  21. Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12

    Article  CAS  PubMed  Google Scholar 

  22. Zhou J, Song T, Gong S, Zhong M, Su G (2010) microRNA regulation of the expression of the estrogen receptor in endometrial cancer. Mol Med Rep 3:387–392

    CAS  PubMed  Google Scholar 

  23. Pan Q, Chegini N (2008) MicroRNA signature and regulatory functions in the endometrium during normal and disease states. Semin Reprod Med 26:479–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pan Q, Luo X, Toloubeydokhti T, Chegini N (2007) The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression. Mol Hum Reprod 13:797–806

    Article  CAS  PubMed  Google Scholar 

  25. Cohn DE, Fabbri M, Valeri N, Alder H, Ivanov I, Liu C, Croce CM, Resnick KE (2010) Comprehensive miRNA profiling of surgically staged endometrial cancer. Am J Obstet Gynecol 202:656.e1–656.e8

    Article  CAS  Google Scholar 

  26. Wu W, Lin Z, Zhuang Z, Liang X (2009) Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. Eur J Cancer Prev 18:50–55

    Article  CAS  PubMed  Google Scholar 

  27. Boren T, Xiong Y, Hakam A, Wenham R, Apte S, Wei Z, Kamath S, Chen D, Dressman H, Lancaster JM (2008) MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol Oncol 110:206–215

    Article  CAS  PubMed  Google Scholar 

  28. Chung TK, Cheung TH, Huen N, Wong KW, Lo KW, Yim SF, Siu NS, Wong YM, Tsang P, Pang M, Yu M, To K, Mok SC, Wang VW, Li C, Cheung AY, Doran G, Birrer MJ, Smith DI, Wong Y (2009) Dysregulated microRNAs and their predicted targets associated with endometrioid endometrial adenocarcinoma in Hong Kong women. Int J Cancer 124:1358–1365

    Article  CAS  PubMed  Google Scholar 

  29. Torres A, Torres K, Pesci A, Ceccaroni M, Paszkowski T, Cassandrini P, Zamboni G, Maciejewski R (2013) Diagnostic and prognostic significance of miRNA signatures in tissues and plasma of endometrioid endometrial carcinoma patients. Int J Cancer 132:1633–1645

    Article  CAS  PubMed  Google Scholar 

  30. Ratner ES, Tuck D, Richter C, Nallur S, Patel RM, Schultz V, Hui P, Schwartz PE, Rutherford TJ, Weidhaas JB (2010) MicroRNA signatures differentiate uterine cancer tumor subtypes. Gynecol Oncol 118:251–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Devor EJ, Hovey AM, Goodheart MJ, Ramachandran S, Leslie KK (2011) microRNA expression profiling of endometrial endometrioid adenocarcinomas and serous adenocarcinomas reveals profiles containing shared, unique and differentiating groups of microRNAs. Oncol Rep 26:995–1002

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jurcevic S, Olsson B, Klinga-Levan K (2014) MicroRNA expression in human endometrial adenocarcinoma. Cancer Cell Int 14:88

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xiong H, Li Q, Liu S, Wang F, Xiong Z, Chen J, Chen H, Yang Y, Tan X, Luo Q, Peng J, Xiao G, Jiang Q (2014) Integrated microRNA and mRNA transcriptome sequencing reveals the potential roles of miRNAs in stage I endometrioid endometrial carcinoma. PLoS One 9:e110163

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kontomanolis EN, Koukourakis MI (2015) MicroRNA: the potential regulator of endometrial carcinogenesis. MicroRNA 4:18–25

    Article  CAS  PubMed  Google Scholar 

  35. Lu J, Zhang X, Zhang R, Ge Q (2015) MicroRNA heterogeneity in endometrial cancer cell lines revealed by deep sequencing. Oncol Lett 10:3457–3465

    PubMed  PubMed Central  Google Scholar 

  36. Canlorbe G, Wang Z, Laas E, Bendifallah S, Castela M, Lefevre M, Chabbert-Buffet N, Darai E, Aractingi S, Mehats C, Ballester M (2016) Identification of microRNA expression profile related to lymph node status in women with early-stage grade 1–2 endometrial cancer. Mod Pathol 29:391–401

    Article  CAS  PubMed  Google Scholar 

  37. Hiroki E, Akahira J, Suzuki F, Nagase S, Ito K, Suzuki T, Sasano H, Yaegashi N (2010) Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas. Cancer Sci 101:241–249

    Article  CAS  PubMed  Google Scholar 

  38. Banno K, Yanokura M, Iida M, Adachi M, Nakamura K, Nogami Y, Umene K, Masuda K, Kisu I, Nomura H, Kataoka F, Tominaga E, Aoki D (2014) Application of microRNA in diagnosis and treatment of ovarian cancer. Biomed Res Int 2014:232817

    Article  PubMed  PubMed Central  Google Scholar 

  39. Romero-Perez L, Lopez-Garcia MA, Diaz-Martin J, Biscuola M, Castilla MA, Tafe LJ, Garg K, Oliva E, Matias-Guiu X, Soslow RA, Palacios J (2013) ZEB1 overexpression associated with E-cadherin and microRNA-200 downregulation is characteristic of undifferentiated endometrial carcinoma. Mod Pathol 26:1514–1524

    Article  CAS  PubMed  Google Scholar 

  40. Yanokura M, Banno K, Kobayashi Y, Kisu I, Ueki A, Ono A, Masuda K, Nomura H, Hirasawa A, Susumu N, Aoki D (2010) MicroRNA and endometrial cancer: roles of small RNAs in human tumors and clinical applications (review). Oncol Lett 1:935–940

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jia W, Wu Y, Zhang Q, Gao G, Zhang C, Xiang Y (2013) Identification of four serum microRNAs from a genome-wide serum microRNA expression profile as potential non-invasive biomarkers for endometrioid endometrial cancer. Oncol Lett 6:261–267

    CAS  PubMed  PubMed Central  Google Scholar 

  42. He S, Zeng S, Zhou Z, He Z, Zhou S (2015) Hsa-microRNA-181a is a regulator of a number of cancer genes and a biomarker for endometrial carcinoma in patients: a bioinformatic and clinical study and the therapeutic implication. Drug Des Dev Ther 9:1103–1175

    Google Scholar 

  43. Lee TS, Jeon HW, Kim YB, Kim YA, Kim MA, Kang SB (2013) Aberrant microRNA expression in endometrial carcinoma using formalin-fixed paraffin-embedded (FFPE) tissues. PLoS One 8:e81421

    Article  PubMed  PubMed Central  Google Scholar 

  44. Feng B, Wang R, Chen L (2012) Review of miR-200b and cancer chemosensitivity. Biomed Pharmacother 66:397–402

    Article  CAS  PubMed  Google Scholar 

  45. Banno K, Kisu I, Yanokura M, Masuda K, Kobayashi Y, Ueki A, Tsuji K, Yamagami W, Nomura H, Susumu N, Aoki D (2012) Endometrial cancer and hypermethylation: regulation of DNA and microRNA by epigenetics. Biochem Res Int 2012:738274

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tsuruta T, Kozaki K, Uesugi A, Furuta M, Hirasawa A, Imoto I, Susumu N, Aoki D, Inazawa J (2011) miR-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res 71:6450–6462

    Article  CAS  PubMed  Google Scholar 

  47. Huang Y, Liu JC, Deatherage DE, Luo J, Mutch DG, Goodfellow PJ, Miller DS, Huang TH (2009) Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res 69:9038–9046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li B, Lu C, Lu W, Yang T, Qu J, Hong X, Wan X (2013) miR-130b is an EMT-related microRNA that targets DICER1 for aggression in endometrial cancer. Med Oncol 30:484

    Article  PubMed  Google Scholar 

  49. Chen J, Wang Y, McMonechy MK, Anglesio MS, Yang W, Senz J, Maines-Bandiera S, Rosner J, Trigo-Gonzalez G, Grace Cheng SW, Kim J, Matzuk MM, Morin GB, Huntsman DG (2015) Recurrent DICER1 hotspot mutations in endometrial tumours and their impact on microRNA biogenesis. J Pathol 237:215–225

    Article  CAS  PubMed  Google Scholar 

  50. Hiroki E, Suzuki F, Akahira J, Nagase S, Ito K, Sugawara J, Miki Y, Suzuki T, Sasano H, Yaegashi N (2012) MicroRNA-34b functions as a potential tumor suppressor in endometrial serous adenocarcinoma. Int J Cancer 131:E395–E404

    Article  CAS  PubMed  Google Scholar 

  51. Shen Y, Lu L, Xu J, Meng W, Qing Y, Liu Y, Zhang B, Hu H (2013) Bortezomib induces apoptosis of endometrial cancer cells through microRNA-17-5p by targeting p21. Cell Biol Int 37:1114–1121

    Article  CAS  PubMed  Google Scholar 

  52. Yan G, Yu F, Wang B, Zhou H, Ge Q, Su J, Hu Y, Sun H, Ding L (2014) MicroRNA miR-302 inhibits the tumorigenicity of endometrial cancer cells by suppression of Cyclin D1 and CDK1. Cancer Lett 345:39–47

    Article  CAS  PubMed  Google Scholar 

  53. Sun K, Chen Y, Chen S, Liu B, Feng M, Zong Z, Zhao Y (2016) The correlation between microRNA490-3p and TGFα in endometrial carcinoma tumorigenesis and progression. Oncotarget 7:9236–9249

    PubMed  PubMed Central  Google Scholar 

  54. Li Q, Qiu X, Li Q, Wang X, Li L, Xu M, Dong M, Xiao Y (2015) MicroRNA-424 may function as a tumor suppressor in endometrial carcinoma cells by targeting E2F7. Oncol Rep 33:2354–2360

    PubMed  Google Scholar 

  55. Park Y, Lee J, Choi J, Jeon H, Cho Y, Choi C, Kim T, Lee NW, Kim B, Bae D (2012) The interactions between MicroRNA-200c and BRD7 in endometrial carcinoma. Gynecol Oncol 124:125–133

    Article  CAS  PubMed  Google Scholar 

  56. Snowdon J, Zhang X, Childs T, Tron VA, Feilotter H (2011) The microRNA-200 family is upregulated in endometrial carcinoma. PLoS One 6:e22828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guo Y, Liao Y, Jia C, Ren J, Wang J, Li T (2013) MicroRNA-182 promotes tumor cell growth by targeting transcription elongation factor A-like 7 in endometrial carcinoma. Cell Physiol Biochem 32:581–590

    Article  CAS  PubMed  Google Scholar 

  58. Wu Y, Liu S, Xin H, Jiang J, Younglai E, Sun S, Wang H (2011) Up-regulation of microRNA-145 promotes differentiation by repressing OCT4 in human endometrial adenocarcinoma cells. Cancer 117:3989–3998

    Article  CAS  PubMed  Google Scholar 

  59. Xu Y, Tian J, Hao Q, Yin L (2015) MicroRNA-495 downregulates FOXC1 expression to suppress cell growth and migration in endometrial cancer. Tumour Biol 37:239–251

    Article  PubMed  PubMed Central  Google Scholar 

  60. Konno Y, Dong P, Xiong Y, Suzuki F, Lu J, Cai M, Watari H, Mitamura T, Hosaka M, Hanley Sharon J B, Kudo M, Sakuragi N (2014) MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells. Oncotarget 5:6049–6062

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gao Y, Liu T, Huang Y (2015) MicroRNA-134 suppresses endometrial cancer stem cells by targeting POGLUT1 and Notch pathway proteins. FEBS Lett 589:207–214

    Article  CAS  PubMed  Google Scholar 

  62. Wu D, Huang H, He C, Wang K (2013) MicroRNA-199a-3p regulates endometrial cancer cell proliferation by targeting mammalian target of rapamycin (mTOR). Int J Gynecol Cancer 23:1191–1197

    Article  PubMed  Google Scholar 

  63. Zhang H, Wang X, Chen Z, Wang W (2015) MicroRNA-424 suppresses estradiol-induced cell proliferation via targeting GPER in endometrial cancer cells. Cell Mol Biol (Noisy-le-grand) 61:96–101

    CAS  Google Scholar 

  64. Chen S, Sun K, Liu B, Zong Z, Zhao Y (2016) MicroRNA-505 functions as a tumor suppressor in endometrial cancer by targeting TGF-α. Mol Cancer 15:11

    Article  PubMed  PubMed Central  Google Scholar 

  65. Liu B, Sun K, Zong Z, Chen S, Zhao Y (2015) MicroRNA-372 inhibits endometrial carcinoma development by targeting the expression of the Ras homolog gene family member C (RhoC). Oncotarget 7:6649–6664

    PubMed Central  Google Scholar 

  66. Qin X, Yan L, Zhao X, Li C, Fu Y (2012) microRNA-21 overexpression contributes to cell proliferation by targeting PTEN in endometrioid endometrial cancer. Oncol Lett 4:1290–1296

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chung TKH, Lau TS, Cheung TH, Yim SF, Lo KWK, Siu NSS, Chan LKY, Yu MY, Kwong J, Doran G, Barroilhet LM, Ng ASW, Wong RRY, Wang VW, Mok SC, Smith DI, Berkowitz RS, Wong YF (2012) Dysregulation of microRNA-204 mediates migration and invasion of endometrial cancer by regulating FOXC1. Int J Cancer 130:1036–1045

    Article  CAS  PubMed  Google Scholar 

  68. Dong P, Kaneuchi M, Watari H, Sudo S, Sakuragi N (2014) MicroRNA-106b modulates epithelial-mesenchymal transition by targeting TWIST1 in invasive endometrial cancer cell lines. Mol Carcinog 53:349–359

    Article  CAS  PubMed  Google Scholar 

  69. Dong P, Kaneuchi M, Watari H, Hamada J, Sudo S, Ju J, Sakuragi N (2011) MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1. Mol Cancer 10:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mitamura T, Watari H, Wang L, Kanno H, Kitagawa M, Hassan MK, Kimura T, Tanino M, Nishihara H, Tanaka S, Sakuragi N (2014) microRNA 31 functions as an endometrial cancer oncogene by suppressing Hippo tumor suppressor pathway. Mol Cancer 13:97

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhou H, Xu X, Xun Q, Yu D, Ling J, Guo F, Yan Y, Shi J, Hu Y (2012) microRNA-30c negatively regulates endometrial cancer cells by targeting metastasis-associated gene-1. Oncol Rep 27:807–812

    CAS  PubMed  Google Scholar 

  72. Shang C, Lu Y, Meng L (2012) MicroRNA-125b down-regulation mediates endometrial cancer invasion by targeting ERBB2. Med Sci Monit 18:BR149–BR155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhuang XP, Jin WW, Teng XD, Yuan ZZ, Lin QQ, Xu ST (2015) c-Met and RON expression levels in endometrial adenocarcinoma tissue and their relationship with prognosis. Eur J Gynaecol Oncol 36:255–259

    CAS  PubMed  Google Scholar 

  74. Dong P, Konno Y, Watari H, Hosaka M, Noguchi M, Sakuragi N (2014) The impact of microRNA-mediated PI3K/AKT signaling on epithelial–mesenchymal transition and cancer stemness in endometrial cancer. J Transl Med 12:231

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang Y, Tang Q, Li M, Jiang S, Wang X (2014) MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA. Biochem Biophys Res Commun 444:199–204

    Article  CAS  PubMed  Google Scholar 

  76. Yu Q, Wu H, Huang X, Shen H, Shu Y, Zhang B, Xiang C, Yu S, Guo R, Chen L (2014) MiR-1 targets PIK3CA and inhibits tumorigenic properties of A549 cells. Biomed Pharmacother 68:155–161

    Article  CAS  PubMed  Google Scholar 

  77. Guo C, Sah JF, Beard L, Willson James K V, Markowitz SD, Guda K (2008) The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosom Cancer 47:939–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Noguchi S, Yasui Y, Iwasaki J, Kumazaki M, Yamada N, Naito S, Akao Y (2013) Replacement treatment with microRNA-143 and -145 induces synergistic inhibition of the growth of human bladder cancer cells by regulating PI3K/Akt and MAPK signaling pathways. Cancer Lett 328:353–361

    Article  CAS  PubMed  Google Scholar 

  79. Zhao X, Zhu D, Lu C, Yan D, Li L, Chen Z (2016) MicroRNA-126 inhibits the migration and invasion of endometrial cancer cells by targeting insulin receptor substrate 1. Oncol Lett 11:1207–1212

    PubMed  Google Scholar 

  80. Dong P, Karaayvaz M, Jia N, Kaneuchi M, Hamada J, Watari H, Sudo S, Ju J, Sakuragi N (2013) Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene 32:3286–3295

    Article  CAS  PubMed  Google Scholar 

  81. Bing L, Hong C, Li-Xin S, Wei G (2014) MicroRNA-543 suppresses endometrial cancer oncogenicity via targeting FAK and TWIST1 expression. Arch Gynecol Obstet 290:533–541

    Article  PubMed  Google Scholar 

  82. Yamamoto N, Nishikawa R, Chiyomaru T, Goto Y, Fukumoto I, Usui H, Mitsuhashi A, Enokida H, Nakagawa M, Shozu M, Seki N (2015) The tumor-suppressive microRNA-1/133a cluster targets PDE7A and inhibits cancer cell migration and invasion in endometrial cancer. Int J Oncol 47:325–334

    PubMed  Google Scholar 

  83. Forget MA, Desrosiers RR, Beliveau R (1999) Physiological roles of matrix metalloproteinases: implications for tumor growth and metastasis. Can J Physiol Pharmacol 77:465–480

    Article  CAS  PubMed  Google Scholar 

  84. Yu D, Zhou H, Xun Q, Xu X, Ling J, Hu Y (2012) microRNA-103 regulates the growth and invasion of endometrial cancer cells through the downregulation of tissue inhibitor of metalloproteinase 3. Oncol Lett 3:1221–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Rak B, Garbicz F, Paskal W, Pelka K, Marczewska JM, Wolosz D, Wlodarski P (2016) The expression of MMP-14 and microRNA-410 in FFPE tissues of human endometrial adenocarcinoma. Histol Histopathol. doi:10.14670/HH-11-728 (in press)

    PubMed  Google Scholar 

  86. Dai Y, Xia W, Song T, Su X, Li J, Li S, Chen Y, Wang W, Ding H, Liu X, Li H, Zhao Q, Shao N (2013) MicroRNA-200b is overexpressed in endometrial adenocarcinomas and enhances MMP2 activity by downregulating TIMP2 in human endometrial cancer cell line HEC-1A cells. Nucleic Acid Ther 23:29–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias B. Stope.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stope, M.B., Koensgen, D., Weimer, J. et al. The future therapy of endometrial cancer: microRNA’s functionality, capability, and putative clinical application. Arch Gynecol Obstet 294, 889–895 (2016). https://doi.org/10.1007/s00404-016-4194-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-016-4194-7

Keywords

Navigation