Skip to main content

Advertisement

Log in

The content of free amino acids in the stratum corneum is increased in senile xerosis

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Xerosis is one of the characteristics of aged skin. Xerosis may be caused by a decrease in the stratum corneum free amino acids which are natural moisturizing factors derived from filaggrin. In aged skin, filaggrin is immunohistochemically decreased compared with the levels in young skin. However, the differences in stratum corneum amino acids between aged and young skin have not been analyzed quantitatively. Therefore, in this study we determined the stratum corneum amino acids per 1000 stratum corneum cells in aged and young skin by high-performance liquid chromatography. The amount of filaggrin mRNA in the epidermis was also compared between aged and young skin using RT-PCR. The total amount of amino acids in the stratum corneum was larger in aged senile xerosis skin than in young skin. Only a few amino acids were found in the stratum corneum of ichthyosis vulgaris patients (control skin). The expression of filaggrin mRNA in aged skin was, however, similar to that in young skin. These findings suggest that the immunohistochemical decrease in filaggrin in aged skin may be caused by promotion of filaggrin proteolysis in the upper layers of the stratum spinulosum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–C
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brown DD, Kies MW (1959) The mammalian metabolism of L-histidine I. J Biol Chem 234:3182–3187

    CAS  PubMed  Google Scholar 

  • Dale BA (1985) Filaggrin. A keratin-filament associated protein. Ann N Y Acad Sci 455:330–342

    CAS  PubMed  Google Scholar 

  • Egelrud T, Lundström A (1990) The dependence of detergent-induced cell dissociation in non-palmoplantar stratum corneum on endogenous proteolysis. J Invest Dermatol 95:456–459

    Google Scholar 

  • Engelke M, Jensen JM, Ekanayake-Mudiyanselage S, Proksche E (1997) Effects of xerosis and aging on epidermal proliferation and differentiation. Br J Dermatol 137:219–225

    Article  CAS  PubMed  Google Scholar 

  • Girbal-Neuhauser E, Durieux JJ, Arnaud M, Dalbon P, Sebbag M, Vincent C, Simon M, Senshu T, Masson-Bessiere C, Jolivet-Reynaud C, Jolivet M, Serre G (1999) The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro)filaggrin by deimination of arginine residues. J Immunol 162:585–594

    PubMed  Google Scholar 

  • Guesdon JL, Ternyneck T, Avraneas S (1979) The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem 27:1131–1139

    PubMed  Google Scholar 

  • Horii I, Kawasaki K, Koyama J, Nakayama Y, Nakajima K, Okazaki K, Seiji M (1983) Histidine-rich protein as a possible origin of free amino acids of the stratum corneum. J Dermatol 10:25–33

    CAS  PubMed  Google Scholar 

  • Jacobson TM, Yüksel Ü, Geesin JC, Gordon JS, Lane AT, Gracy RW (1990) Effect of aging and xerosis on the amino acid composition of human skin. J Invest Dermatol 95:296–300

    Google Scholar 

  • Kashima M, Fukuyama K, Kikuchi M, Epstein WL (1988) Limited proteolysis of high molecular weight histidine-rich protein of rat epidermis by epidermal proteinases. J Invest Dermatol 90:829–833

    Google Scholar 

  • Kawada A, Hara K, Morimoto K, Hiruma M, Ishibashi A (1995a) Rat epidermal cathepsin B: purification and characterization of proteolytic properties toward filaggrin and synthetic substrates. Int J Biochem Cell Biol 27:175–183

    Article  CAS  PubMed  Google Scholar 

  • Kawada A, Hara K, Hiruma M, Noguchi H, Ishibashi A (1995b) Rat epidermal cathepsin L-like proteinase: purification and some hydrolytic properties toward filaggrin and synthetic substrate. J Biochem 118:332–337

    CAS  PubMed  Google Scholar 

  • Lin JK, Chang JY (1975) Chromophoric labeling of amino acids with 4-dimethylaminoazobenzene-4′-sulfonyl chloride. Anal Chem 47:1634–1638

    CAS  Google Scholar 

  • Marty JP (2002) NMF and cosmetology in cutaneous hydration. Ann Dermatol Venereol 129:131–136

    PubMed  Google Scholar 

  • Masson-Bessiere C, Sebbag M, Girbal-Neuhauser E, Nogueira L, Vincent C, Senshu T, Serre G (2001) The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha- and beta-chains of fibrin. J Immunol 166:4177–4184

    CAS  PubMed  Google Scholar 

  • McKinley-Grant LJ, Idler WW, Bernstein IA, Parry DA, Cannizzaro L, Croce CM, Huebner K, Lessin SR, Steinert PM (1989) Characterization of a cDNA clone encoding human filaggrin and localization of the gene to chromosome region 1q21. Proc Natl Acad Sci U S A 86:4848–4852

    CAS  PubMed  Google Scholar 

  • Rice RH, Thacher SM (1986) Involucrin: a constituent of cross-linking envelopes and marker of squamous maturation, In: Breiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument. Springer-Verlag, Berlin, pp 752–761

  • Sato J, Kiatagiri C, Nomura J, Denda M (2001) Drastic decrease in environmental humidity decreases water-holding capacity and free amino acid content of the stratum corneum. Arch Dermatol Res 293:477–480

    Article  CAS  PubMed  Google Scholar 

  • Scott IR, Harding CR, Barett JG (1982) Histidine-rich protein of the keratohyalin granules. Source of the free amino acids, urocanic acid and pyrrolidone carboxylic acid in the stratum corneum. Biochim Biophys Acta 719:110–117

    Article  CAS  PubMed  Google Scholar 

  • Senshu T, Akiyama K, Asaga H, Ishigami A, Manabe M (1995) Detection of deiminated proteins in rat skin: probing with a monospecific antibody after modification of citrulline residues. J Invest Dermatol 105:163–169

    Google Scholar 

  • Sybert VP, Dale BA, Holbrook KA (1985) Ichthyosis vulgaris: identification of a defect in synthesis of filaggrin correlated with an absence of keratohyalin granules. J Invest Dermatol 184:191–194

    Google Scholar 

  • Takahashi M, Tezuka T (1997) Quantitative analysis of histidine and cis and trans isomers of urocanic acid by high-performance liquid chromatography: a new assay method and its application. J Chromatogr B 668:197–203

    Google Scholar 

  • Takahashi M, Tezuka T, Katunuma N (1992) Phosphorylated cystatin alpha is a natural substrate of epidermal transglutaminase for formation of skin cornified envelope. FEBS Lett 308:79–82

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Okada M, Zhen YX, Inamura N, Kitano T, Shirai S, Sakamoto K, Inamura T, Tagami H (1998) Decreased hydration state of the stratum corneum and reduced amino acid content of the skin surface in patients with seasonal allergic rhinitis. Br J Dermatol 139:618–621

    Article  CAS  PubMed  Google Scholar 

  • Tezuka T, Takahashi M (1987) Human hematoxylin-stainable protein of keratohyalin granule origin. I. Extraction and purification. J Invest Dermatol 89:400–404

    Google Scholar 

  • Tezuka T, Qing J, Saheki M, Kusuda S, Takahashi M (1994) Terminal differentiation of facial epidermis of the aged: immunohistochemical studies. Dermatology 188:21–24

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Shiseido Skin Aging Foundation and Osaka Gas Group Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masae Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, M., Tezuka, T. The content of free amino acids in the stratum corneum is increased in senile xerosis. Arch Dermatol Res 295, 448–452 (2004). https://doi.org/10.1007/s00403-003-0448-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-003-0448-x

Keywords

Navigation