Skip to main content

Advertisement

Log in

Oncogenic role of microRNAs in brain tumors

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are short non-protein-coding RNAs that function as key regulators of diverse biological processes through negative control on gene expression at the post-transcriptional level. Emerging evidence indicates that miRNAs play an important role in the development of human cancers, with their deregulation resulting in altered activity of downstream tumor suppressors, oncogenes and other signaling molecules. Recent years have seen considerable progress in miRNA research in brain tumors, particularly in glioblastomas and medulloblastomas, providing novel insights into the pathogenesis of these malignant lesions. Expression profiling has unveiled miRNA signatures that not only distinguish brain tumors from normal tissues, but can also differentiate histotypes or molecular subtypes with altered genetic pathways. Moreover, specific miRNA subsets may have potential diagnostic and prognostic values in some brain tumors. Several deregulated miRNAs uncovered in glioblastomas and medulloblastomas have their gene targets and the associated genetic pathways identified. This review summarizes recent findings of miRNA study in brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amaral FC, Torres N, Saggioro F, Neder L, Machado HR, Silva WA Jr, Moreira AC, Castro M (2009) MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 94:320–323. doi:10.1210/jc.2008-1451

    Article  PubMed  CAS  Google Scholar 

  2. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9:277–279. doi:10.1261/rna.2183803

    Article  PubMed  CAS  Google Scholar 

  3. Aoki H, Yokoyama T, Fujiwara K, Tari AM, Sawaya R, Suki D, Hess KR, Aldape KD, Kondo S, Kumar R, Kondo Y (2007) Phosphorylated Pak1 level in the cytoplasm correlates with shorter survival time in patients with glioblastoma. Clin Cancer Res 13:6603–6609. doi:10.1158/1078-0432.CCR-07-0145

    Article  PubMed  CAS  Google Scholar 

  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. doi:10.1016/S0092-8674(04)00045-5

    Article  PubMed  CAS  Google Scholar 

  5. Baudis M, Cleary ML (2001) Progenetix.net: an online repository for molecular cytogenetic aberration data. Bioinformatics 17:1228–1229. doi:10.1093/bioinformatics/17.12.1228

    Article  PubMed  CAS  Google Scholar 

  6. Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC (2005) miR-15a and miR-16–1 down-regulation in pituitary adenomas. J Cell Physiol 204:280–285

    Article  PubMed  CAS  Google Scholar 

  7. Bottoni A, Zatelli MC, Ferracin M, Tagliati F, Piccin D, Vignali C, Calin GA, Negrini M, Croce CM, Degli Uberti EC (2007) Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210:370–377. doi:10.1002/jcp.20832

    Article  PubMed  CAS  Google Scholar 

  8. Cadieux B, Ching TT, VandenBerg SR, Costello JF (2006) Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Res 66:8469–8476. doi:10.1158/0008-5472.CAN-06-1547

    Article  PubMed  CAS  Google Scholar 

  9. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529. doi:10.1073/pnas.242606799

    Article  PubMed  CAS  Google Scholar 

  10. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004. doi:10.1073/pnas.0307323101

    Article  PubMed  CAS  Google Scholar 

  11. Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  CAS  Google Scholar 

  12. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033. doi:10.1158/0008-5472.CAN-05-0137

    Article  PubMed  CAS  Google Scholar 

  13. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006. doi:10.1038/cr.2008.282

    Article  PubMed  CAS  Google Scholar 

  14. Chen Y, Liu W, Chao T, Zhang Y, Yan X, Gong Y, Qiang B, Yuan J, Sun M, Peng X (2008) MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272:197–205. doi:10.1016/j.canlet.2008.06.034

    Article  PubMed  CAS  Google Scholar 

  15. Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297. doi:10.1093/nar/gki200

    Article  PubMed  CAS  Google Scholar 

  16. Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358. doi:10.1016/j.bbrc.2005.07.030

    Article  PubMed  CAS  Google Scholar 

  17. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102:13944–13949. doi:10.1073/pnas.0506654102

    Article  PubMed  CAS  Google Scholar 

  18. Conti A, Aguennouz M, La Torre D, Tomasello C, Cardali S, Angileri FF, Maio F, Cama A, Germanò A, Vita G, Tomasello F (2009) miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neurooncol [Epub ahead of print]

  19. Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67:8994–9000. doi:10.1158/0008-5472.CAN-07-1045

    Article  PubMed  CAS  Google Scholar 

  20. Eberhart CG, Brat DJ, Cohen KJ, Burger PC (2000) Pediatric neuroblastic brain tumors containing abundant neuropil and true rosettes. Pediatr Dev Pathol 3:346–352. doi:10.1007/s100249910049

    Article  PubMed  CAS  Google Scholar 

  21. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726. doi:10.1038/nmeth1079

    Article  PubMed  CAS  Google Scholar 

  22. Esau CC (2008) Inhibition of microRNA with antisense oligonucleotides. Methods 44:55–60. doi:10.1016/j.ymeth.2007.11.001

    Article  PubMed  CAS  Google Scholar 

  23. Fedele M, Battista S, Kenyon L, Baldassarre G, Fidanza V, Klein-Szanto AJ, Parlow AF, Visone R, Pierantoni GM, Outwater E, Santoro M, Croce CM, Fusco A (2002) Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene 21:3190–3198. doi:10.1038/sj.onc.1205428

    Article  PubMed  CAS  Google Scholar 

  24. Ferretti E, De Smaele E, Miele E, Laneve P, Po A, Pelloni M, Paganelli A, Di Marcotullio L, Caffarelli E, Screpanti I, Bozzoni I, Gulino A (2008) Concerted microRNA control of hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 27:2616–2627. doi:10.1038/emboj.2008.172

    Article  PubMed  CAS  Google Scholar 

  25. Ferretti E, De Smaele E, Po A, Di Marcotullio L, Tosi E, Espinola MS, Di Rocco C, Riccardi R, Giangaspero F, Farcomeni A, Nofroni I, Laneve P, Gioia U, Caffarelli E, Bozzoni I, Screpanti I, Gulino A (2009) MicroRNA profiling in human medulloblastoma. Int J Cancer 124:568–577. doi:10.1002/ijc.23948

    Article  PubMed  CAS  Google Scholar 

  26. Flynt AS, Lai EC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9:831–842. doi:10.1038/nrg2455

    Article  PubMed  CAS  Google Scholar 

  27. Fuller C, Fouladi M, Gajjar A, Dalton J, Sanford RA, Helton KJ (2006) Chromosome 17 abnormalities in pediatric neuroblastic tumor with abundant neuropil and true rosettes. Am J Clin Pathol 126:277–283. doi:10.1309/TFBX1LWQ93MXQBAW

    Article  PubMed  Google Scholar 

  28. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, Krichevsky AM (2008) MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28:5369–5380. doi:10.1128/MCB.00479-08

    Article  PubMed  CAS  Google Scholar 

  29. Gal H, Pandi G, Kanner AA, Ram Z, Lithwick-Yanai G, Amariglio N, Rechavi G, Givol D (2008) MIR-451 and Imatinib mesylate inhibit tumor growth of glioblastoma stem cells. Biochem Biophys Res Commun 376:86–90. doi:10.1016/j.bbrc.2008.08.107

    Article  PubMed  CAS  Google Scholar 

  30. Gessi M, Giangaspero F, Lauriola L, Gardiman M, Scheithauer BW, Halliday W, Hawkins C, Rosenblum MK, Burger PC, Eberhart CG (2009) Embryonal tumors with abundant neuropil and true rosettes: a distinctive CNS primitive neuroectodermal tumor. Am J Surg Pathol 33:211–217. doi:10.1097/PAS.0b013e318186235b

    Article  PubMed  Google Scholar 

  31. Gillies JK, Lorimer IA (2007) Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6:2005–2009

    PubMed  CAS  Google Scholar 

  32. Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca EA, Lawler S (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130. doi:10.1158/0008-5472.CAN-08-2629

    Article  PubMed  CAS  Google Scholar 

  33. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111. doi:10.1093/nar/gkh023

    Article  PubMed  CAS  Google Scholar 

  34. Haas-Kogan D, Shalev N, Wong M, Mills G, Yount G, Stokoe D (1998) Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr Biol 8:1195–1198. doi:10.1016/S0960-9822(07)00493-9

    Article  PubMed  CAS  Google Scholar 

  35. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833. doi:10.1038/nature03552

    Article  PubMed  CAS  Google Scholar 

  36. Iaquinta PJ, Lees JA (2007) Life and death decisions by the E2F transcription factors. Curr Opin Cell Biol 19:649–657. doi:10.1016/j.ceb.2007.10.006

    Article  PubMed  CAS  Google Scholar 

  37. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Ménard S, Croce CM (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67:8699–8707. doi:10.1158/0008-5472.CAN-07-1936

    Article  PubMed  CAS  Google Scholar 

  38. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:e363. doi:10.1371/journal.pbio.0020363

    Article  PubMed  CAS  Google Scholar 

  39. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S, Purow B (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68:3566–3572. doi:10.1158/0008-5472.CAN-07-6639

    Article  PubMed  CAS  Google Scholar 

  40. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385. doi:10.1038/nrm1644

    Article  PubMed  CAS  Google Scholar 

  41. Knobbe CB, Reifenberger G (2003) Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3′-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathol 13:507–518

    Article  PubMed  CAS  Google Scholar 

  42. Krichevsky AM, Sonntag KC, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24:857–864. doi:10.1634/stemcells.2005-0441

    Article  PubMed  CAS  Google Scholar 

  43. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689. doi:10.1038/nature04303

    Article  PubMed  CAS  Google Scholar 

  44. Krützfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, Manoharan M, Stoffel M (2007) Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res 35:2885–2892. doi:10.1093/nar/gkm024

    Article  PubMed  CAS  Google Scholar 

  45. Kumar R, Gururaj AE, Barnes CJ (2006) p21-activated kinases in cancer. Nat Rev Cancer 6:459–4571. doi:10.1038/nrc1892

    Article  PubMed  CAS  Google Scholar 

  46. Laneve P, Di Marcotullio L, Gioia U, Fiori ME, Ferretti E, Gulino A, Bozzoni I, Caffarelli E (2007) The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proc Natl Acad Sci USA 104:7957–7962. doi:10.1073/pnas.0700071104

    Article  PubMed  CAS  Google Scholar 

  47. Lau P, Verrier JD, Nielsen JA, Johnson KR, Notterpek L, Hudson LD (2008) Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes. J Neurosci 28:11720–11730. doi:10.1523/JNEUROSCI.1932-08.2008

    Article  PubMed  CAS  Google Scholar 

  48. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS, Hatton CS, Harris AL (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675. doi:10.1111/j.1365-2141.2008.07077.x

    Article  PubMed  Google Scholar 

  49. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. doi:10.1016/0092-8674(93)90529-Y

    Article  PubMed  CAS  Google Scholar 

  50. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798. doi:10.1016/S0092-8674(03)01018-3

    Article  PubMed  CAS  Google Scholar 

  51. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20. doi:10.1016/j.cell.2004.12.035

    Article  PubMed  CAS  Google Scholar 

  52. Li KK, Pang JC, Ching AK, Wong CK, Kong X, Wang Y, Zhou L, Ng HK (2009) miR-124 is frequently downregulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol (in press)

  53. Liu X, Fortin K, Mourelatos Z (2008) MicroRNAs: biogenesis and molecular functions. Brain Pathol 18:113–121. doi:10.1111/j.1750-3639.2007.00121.x

    Article  PubMed  CAS  Google Scholar 

  54. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. doi:10.1038/nature03702

    Article  PubMed  CAS  Google Scholar 

  55. Lukiw WJ, Cui JG, Li YY, Culicchia F (2009) Up-regulation of micro-RNA-221 (miRNA-221; chr Xp11.3) and caspase-3 accompanies down-regulation of the survivin-1 homolog BIRC1 (NAIP) in glioblastoma multiforme (GBM). J Neurooncol 91:27–32. doi:10.1007/s11060-008-9688-0

    Article  PubMed  CAS  Google Scholar 

  56. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448. doi:10.1016/j.molcel.2007.07.015

    Article  PubMed  CAS  Google Scholar 

  57. Malzkorn B, Wolter M, Grzendowski M, Stühler K, Reifenberger G (2008) Identification and functional characterization of microRNAs involved in the malignant progression of astrocytic gliomas. Acta Neuropathol 116:350

    Google Scholar 

  58. Marino S (2005) Medulloblastoma: developmental mechanisms out of control. Trends Mol Med 11:17–22. doi:10.1016/j.molmed.2004.11.008

    Article  PubMed  CAS  Google Scholar 

  59. Medina R, Zaidi SK, Liu CG, Stein JL, van Wijnen AJ, Croce CM, Stein GS (2008) MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res 68:2773–2780. doi:10.1158/0008-5472.CAN-07-6754

    Article  PubMed  CAS  Google Scholar 

  60. Mendrzyk F, Radlwimmer B, Joos S, Kokocinski F, Benner A, Stange DE, Neben K, Fiegler H, Carter NP, Reifenberger G, Korshunov A, Lichter P (2005) Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma. J Clin Oncol 23:8853–8862. doi:10.1200/JCO.2005.02.8589

    Article  PubMed  CAS  Google Scholar 

  61. Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130:2113–2129. doi:10.1053/j.gastro.2006.02.057

    Article  PubMed  CAS  Google Scholar 

  62. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658. doi:10.1053/j.gastro.2007.05.022

    Article  PubMed  CAS  Google Scholar 

  63. Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, Kuker H, Sion-Vardy N, Tobar A, Kharenko O, Sitbon E, Yanai G, Elyakim E, Cholakh H, Gibori H, Spector Y, Bentwich Z, Barshack I, Rosenfeld N (2008) MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol [Epub ahead of print]

  64. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1:155–161. doi:10.1038/nmeth717

    Article  PubMed  CAS  Google Scholar 

  65. Nelson PT, Baldwin DA, Kloosterman WP, Kauppinen S, Plasterk RH, Mourelatos Z (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12:187–191. doi:10.1261/rna.2258506

    Article  PubMed  CAS  Google Scholar 

  66. Papagiannakopoulos T, Shapiro A, Kosik KS (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68:8164–8172. doi:10.1158/0008-5472.CAN-08-1305

    Article  PubMed  CAS  Google Scholar 

  67. Pardridge WM (2007) shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev 59:141–152. doi:10.1016/j.addr.2007.03.008

    Article  PubMed  CAS  Google Scholar 

  68. Pfister S, Remke M, Castoldi M, Bai AH, Muckenthaler MU, Kulozik A, von Deimling A, Pscherer A, Lichter P, Korshunov A (2009) Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathol 117:457–464. doi:10.1007/s00401-008-0467-y

    Article  PubMed  CAS  Google Scholar 

  69. Pierson J, Hostager B, Fan R, Vibhakar R (2008) Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol 90:1–7. doi:10.1007/s11060-008-9624-3

    Article  PubMed  CAS  Google Scholar 

  70. Piva R, Cavalla P, Bortolotto S, Cordera S, Richiardi P, Schiffer D (1997) p27/kip1 expression in human astrocytic gliomas. Neurosci Lett 234:127–130. doi:10.1016/S0304-3940(97)00688-5

    Article  PubMed  CAS  Google Scholar 

  71. Qian ZR, Asa SL, Siomi H, Siomi MC, Yoshimoto K, Yamada S, Wang EL, Rahman MM, Inoue H, Itakura M, Kudo E, Sano T (2009) Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol 22:431–441. doi:10.1038/modpathol.2008.202

    Article  PubMed  CAS  Google Scholar 

  72. Reddy SD, Ohshiro K, Rayala SK, Kumar R (2008) MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res 68:8195–8200. doi:10.1158/0008-5472.CAN-08-2103

    Article  PubMed  CAS  Google Scholar 

  73. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906. doi:10.1038/35002607

    Article  PubMed  CAS  Google Scholar 

  74. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910. doi:10.1101/gr.2722704

    Article  PubMed  CAS  Google Scholar 

  75. Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z, You Y (2008) hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res 1236:185–193. doi:10.1016/j.brainres.2008.07.085

    Article  PubMed  CAS  Google Scholar 

  76. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA, Alvarez-Buylla A, Hodgson JG (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14. doi:10.1186/1741-7015-6-14

    Article  PubMed  CAS  Google Scholar 

  77. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476. doi:10.1038/ncb1800

    Article  PubMed  CAS  Google Scholar 

  78. Smirnova L, Gräfe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469–1477. doi:10.1111/j.1460-9568.2005.03978.x

    Article  PubMed  Google Scholar 

  79. Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S (2008) The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol 18:89–102. doi:10.1016/j.semcancer.2008.01.004

    Article  PubMed  CAS  Google Scholar 

  80. Szafranska AE, Davison TS, Shingara J, Doleshal M, Riggenbach JA, Morrison CD, Jewell S, Labourier E (2008) Accurate molecular characterization of formalin-fixed, paraffin-embedded tissues by microRNA expression profiling. J Mol Diagn 10:415–423. doi:10.2353/jmoldx.2008.080018

    Article  PubMed  CAS  Google Scholar 

  81. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21. doi:10.1016/j.ygyno.2008.04.033

    Article  PubMed  CAS  Google Scholar 

  82. Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A, He L, Ellison D, Gilbertson RJ, Hannon G, Roussel MF (2009) The miR-17 92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci USA 106:2812–2817. doi:10.1073/pnas.0809579106

    Article  PubMed  CAS  Google Scholar 

  83. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M (2004) Stem cells and cancer: the polycomb connection. Cell 118:409–418. doi:10.1016/j.cell.2004.08.005

    Article  PubMed  CAS  Google Scholar 

  84. Visvanathan J, Lee S, Lee B, Lee JW, Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21:744–749. doi:10.1101/gad.1519107

    Article  PubMed  CAS  Google Scholar 

  85. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261. doi:10.1073/pnas.0510565103

    Article  PubMed  CAS  Google Scholar 

  86. Wong AJ, Bigner SH, Bigner DD, Kinzler KW, Hamilton SR, Vogelstein B (1987) Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 84:6899–6903. doi:10.1073/pnas.84.19.6899

    Article  PubMed  CAS  Google Scholar 

  87. Würdinger T, Tannous BA, Saydam O, Skog J, Grau S, Soutschek J, Weissleder R, Breakefield XO, Krichevsky AM (2008) miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 14:382–393. doi:10.1016/j.ccr.2008.10.005

    Article  PubMed  CAS  Google Scholar 

  88. Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K, Hayashi K, Ju J (2007) Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 13:1668–1674. doi:10.1261/rna.642907

    Article  PubMed  CAS  Google Scholar 

  89. Xia H, Qi Y, Ng SS, Chen X, Chen S, Fang M, Wesley W, Kung HF, Lai L, Lin MC (2009) MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochem Biophys Res Commun 380:205–210. doi:10.1016/j.bbrc.2008.12.169

    Article  PubMed  CAS  Google Scholar 

  90. www.santaris.com

  91. Yu JY, Chung KH, Deo M, Thompson RC, Turner DL (2008) MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res 314:2618–2633. doi:10.1016/j.yexcr.2008.06.002

    Article  PubMed  CAS  Google Scholar 

  92. Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X, Gong Y, Yin B, Liu W, Qiang B, Zhao J, Yuan J, Peng X (2009) MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med 87:43–51. doi:10.1007/s00109-008-0403-6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors apologize to those colleagues whose outstanding work could not be cited due to space constraints. This study was supported by the State Key Laboratory in Oncology in South China, Research Grants Council of Hong Kong and the Shanghai-Hong Kong Anson Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Chung-sean Pang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, J.Cs., Kwok, W.K., Chen, Z. et al. Oncogenic role of microRNAs in brain tumors. Acta Neuropathol 117, 599–611 (2009). https://doi.org/10.1007/s00401-009-0525-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-009-0525-0

Keywords

Navigation