Skip to main content

Advertisement

Log in

Common mutations of β-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Dysregulation of the Wnt signalling pathway contributes to developmental abnormalities and carcinogenesis of solid tumours. Here, we examined β-catenin and adenomatous polyposis coli (APC) by mutational analysis in pituitary adenomas (n=60) and a large series of craniopharyngiomas (n=41). Furthermore, the expression pattern of β-catenin was immunohistochemically analysed in a cohort of tumours and cysts of the sellar region including pituitary adenomas (n=58), craniopharyngiomas (n=57), arachnoidal cysts (n=8), Rathke’s cleft cysts (n=10) and xanthogranulomas (n=6). Whereas APC mutations were not detectable in any tumour entity, β-catenin mutations were present in 77% of craniopharyngiomas, exclusively of the adamantinomatous subtype. All mutations affected exon 3, which encodes the degradation targeting box of β-catenin compatible with an accumulation of nuclear β-catenin protein. In addition, a novel 81-bp deletion of this exonic region was detected in one case. Immunohistochemical analysis confirmed a shift from membrane-bound to nuclear accumulation of β-catenin in 94% of the adamantinomatous tumours. Aberrant distribution patterns of β-catenin were never observed in the other tumour entities under study. We conclude that β-catenin mutations and/or nuclear accumulation serve as diagnostic hallmarks of the adamantinomatous variant, setting it apart from the papillary variant of craniopharyngioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Behrens J, Lustig B (2004) The Wnt connection to tumorigenesis. Int J Dev Biol 48:477–487

    Google Scholar 

  2. Brabletz T, Kirchner T (2003) [Morphogenetic aspects of colorectal cancer]. Pathologe 24:44–48

    Google Scholar 

  3. Budowle B, Chakraborty R, Giusti AM, Eisenberg AJ, Allen RC (1991) Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am J Hum Genet 48:137–144

    Google Scholar 

  4. Dahia PL, Aguiar RC, Honegger J, Fahlbusch R, Jordan S, Lowe DG, Lu X, Clayton RN, Besser GM, Grossman AB (1998) Mutation and expression analysis of the p27/kip1 gene in corticotrophin-secreting tumours. Oncogene 16:69–76

    Google Scholar 

  5. Fahlbusch R, Honegger J, Paulus W, Huk W, Buchfelder M (1999) Surgical treatment of craniopharyngiomas: experience with 168 patients. J Neurosurg 90:237–250

    Google Scholar 

  6. Fodde R (2002) The APC gene in colorectal cancer. Eur J Cancer 38:867–871

    Google Scholar 

  7. Friedrich A, Kullmann F (2003) [Familial adenomatous polyposis syndrome (FAP): pathogenesis and molecular mechanisms]. Med Klin (Munich) 98:776–782

    Google Scholar 

  8. Gorski GK, McMorrow LE, Donaldson MH, Freed M (1992) Multiple chromosomal abnormalities in a case of craniopharyngioma. Cancer Genet Cytogenet 60:212–213

    Google Scholar 

  9. Hassanein AM, Glanz SM, Kessler HP, Eskin TA, Liu C (2003) Beta-catenin is expressed aberrantly in tumors expressing shadow cells. Pilomatricoma, craniopharyngioma, and calcifying odontogenic cyst. Am J Clin Pathol 120:732–736

    Google Scholar 

  10. He TC, Sparks AB, Rago C, Hermeking H, Zawel L,Costa LT da , Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Google Scholar 

  11. Herman V, Drazin NZ, Gonsky R, Melmed S (1993) Molecular screening of pituitary adenomas for gene mutations and rearrangements. J Clin Endocrinol Metab 77:50–55

    Google Scholar 

  12. Huelsken J, Birchmeier W (2001) New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev 11:547–553

    Google Scholar 

  13. Karga HJ, Alexander JM, Hedley-Whyte ET, Klibanski A, Jameson JL (1992) Ras mutations in human pituitary tumors. J Clin Endocrinol Metab 74:914–919

    Google Scholar 

  14. Kato K, Nakatani Y, Kanno H, Inayama Y, Ijiri R, Nagahara N, Miyake T, Tanaka M, Ito Y, Aida N, Tachibana K, Sekido K, Tanaka Y (2004) Possible linkage between specific histological structures and aberrant reactivation of the Wnt pathway in adamantinomatous craniopharyngioma. J Pathol 203:814–821

    Google Scholar 

  15. Kirchner T, Brabletz T (2000) Patterning and nuclear beta-catenin expression in the colonic adenoma-carcinoma sequence. Analogies with embryonic gastrulation. Am J Pathol 157:1113–1121

    Google Scholar 

  16. Koch A, Denkhaus D, Albrecht S, Leuschner I, Schweinitz D von, Pietsch T (1999) Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the beta-catenin gene. Cancer Res 59:269–273

    Google Scholar 

  17. Kratochwil K, Dull M, Farinas I, Galceran J, Grosschedl R (1996) Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev 10:1382–1394

    Google Scholar 

  18. Kratochwil K, Galceran J, Tontsch S, Roth W, Grosschedl R (2002) FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(-/-) mice. Genes Dev 16:3173–3185

    Google Scholar 

  19. McCabe CJ, Gittoes NJ (1999) PTTG—a new pituitary tumour transforming gene. J Endocrinol 162:163–166

    Google Scholar 

  20. Moreno-Bueno G, Gamallo C, Perez-Gallego L, Contreras F, Palacios J (2001) Beta-catenin expression in pilomatrixomas. Relationship with beta-catenin gene mutations and comparison with beta-catenin expression in normal hair follicles. Br J Dermatol 145:576–581

    Google Scholar 

  21. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790

    Google Scholar 

  22. Nagase H, Nakamura Y (1993) Mutations of the APC (adenomatous polyposis coli) gene. Hum Mutat 2:425–434

    Google Scholar 

  23. Nakatani Y, Masudo K, Miyagi Y, Inayama Y, Kawano N, Tanaka Y, Kato K, Ito T, Kitamura H, Nagashima Y, Yamanaka S, Nakamura N, Sano J, Ogawa N, Ishiwa N, Notohara K, Resl M, Mark EJ (2002) Aberrant nuclear localization and gene mutation of beta-catenin in low-grade adenocarcinoma of fetal lung type: up-regulation of the Wnt signaling pathway may be a common denominator for the development of tumors that form morules. Mod Pathol 15:617–624

    Google Scholar 

  24. Paulus W, Honegger J, Keyvani K, Fahlbusch R (1999) Xanthogranuloma of the sellar region: a clinicopathological entity different from adamantinomatous craniopharyngioma. Acta Neuropathol 97:377–382

    Google Scholar 

  25. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851

    Google Scholar 

  26. Sarubi JC, Bei H, Adams EF, Boson WL, Friedman E, Brandao K, Kalapothakis E, Miranda D, Valle FL, Sarquis MS, De Marco L (2001) Clonal composition of human adamantinomatous craniopharyngiomas and somatic mutation analyses of the patched (PTCH), Gsalpha and Gi2alpha genes. Neurosci Lett 310:5–8

    Google Scholar 

  27. Sekine S, Shibata T, Kokubu A, Morishita Y, Noguchi M, Nakanishi Y, Sakamoto M, Hirohashi S (2002) Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am J Pathol 161:1997–2001

    Google Scholar 

  28. Sekine S, Sato S, Takata T, Fukuda Y, Ishida T, Kishino M, Shibata T, Kanai Y, Hirohashi S (2003) Beta-catenin mutations are frequent in calcifying odontogenic cysts, but rare in ameloblastomas. Am J Pathol 163:1707–1712

    Google Scholar 

  29. Sekine S, Takata T, Shibata T, Mori M, Morishita Y, Noguchi M, Uchida T, Kanai Y, Hirohashi S (2004) Expression of enamel proteins and LEF1 in adamantinomatous craniopharyngioma: evidence for its odontogenic epithelial differentiation. Histopathology 45:573–579

    Google Scholar 

  30. Semba S, Han SY, Ikeda H, Horii A (2001) Frequent nuclear accumulation of beta-catenin in pituitary adenoma. Cancer 91:42–48

    Google Scholar 

  31. Shimon I, Yan X, Ray DW, Melmed S (1997) Cytokine-dependent gp130 receptor subunit regulates human fetal pituitary adrenocorticotropin hormone and growth hormone secretion. J Clin Invest 100:357–363

    Google Scholar 

  32. Tanaka Y, Kato K, Notohara K, Nakatani Y, Miyake T, Ijiri R, Nishimata S, Ishida Y, Kigasawa H, Ohama Y, Tsukayama C, Kobayashi Y, Horie H (2003) Significance of aberrant (cytoplasmic/nuclear) expression of beta-catenin in pancreatoblastoma. J Pathol 199:185–190

    Google Scholar 

  33. Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    Google Scholar 

  34. Thapar K, Kovacs K (1998) Neoplasms of the sellar region. In: Bigner DD, McLendon RE, Bruner JM (eds) Russell and Rubinstein’s pathology of tumors of the nervous system, 6th edn. Arnold, London, pp 629–680

  35. Tsang WY (2004) Only adamantinomatous but not papillary type of craniopharyngioma is associated with beta-catenin mutation. Adv Anat Pathol 11:223

    Google Scholar 

  36. Tziortzioti V, Ruebel KH, Kuroki T, Jin L, Scheithauer BW, Lloyd RV (2001) Analysis of beta-catenin mutations and alpha-, beta-, and gamma-catenin expression in normal and neoplastic human pituitary tissues. Endocr Pathol 12:125–136

    Google Scholar 

  37. Vallar L, Spada A, Giannattasio G (1987) Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature 330:566–568

    Google Scholar 

  38. Wikramanayake AH, Hong M, Lee PN, Pang K, Byrum CA, Bince JM, Xu R, Martindale MQ (2003) An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature 426:446–450

    Google Scholar 

  39. Xin W, Rubin MA, McKeever PE (2002) Differential expression of cytokeratins 8 and 20 distinguishes craniopharyngioma from rathke cleft cyst. Arch Pathol Lab Med 126:1174–1178

    Google Scholar 

  40. Zhang X, Horwitz GA, Heaney AP, Nakashima M, Prezant TR, Bronstein MD, Melmed S (1999) Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab 84:761–767

    Google Scholar 

Download references

Acknowledgments

We thank Dr. I. Blümcke (University of Erlangen, Germany) and Dr. A. Koch (University of Bonn, Germany) for helpful discussions. We thank V. Schmidt, S. Gutmann and B. Rings for expert technical assistance. The work is supported by ELAN and Marohn funds from the University of Erlangen Medical Faculty.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Buslei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buslei, R., Nolde, M., Hofmann, B. et al. Common mutations of β-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol 109, 589–597 (2005). https://doi.org/10.1007/s00401-005-1004-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-005-1004-x

Keywords

Navigation