Skip to main content
Log in

50-Hz magnetic field exposure influences DNA repair and mitochondrial DNA synthesis of distinct cell types in brain and kidney of adult mice

  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Despite several recent investigations, the impact of whole-body magnetic field exposure on cell-type-specific alterations due to DNA damage and DNA repair remains unclear. In this pilot study adult mice were exposed to 50-Hz magnetic field (mean value 1.5 mT) for 8 weeks or left unexposed. Five minutes after ending exposure, the mice received [3H]thymidine and were killed 2 h later. Autoradiographs were prepared from paraffin sections of brains and kidneys for measuring unscheduled DNA synthesis and mitochondrial DNA synthesis, or in situ nick translation with DNA polymerase-I and [3H]dTTP. A significant (P<0.05) increase in both unscheduled DNA synthesis and in situ nick translation was only found for epithelial cells of the choroid plexus. Thus, these two independent methods indicate that nuclear DNA damage is produced by long-lasting and strong magnetic field exposure. The fact that only plexus epithelial cells were affected might point to possible effects of magnetic fields on iron transport across the blood-cerebrospinal fluid barrier, but the mechanisms are currently not understood. Mitochondrial DNA synthesis was exclusively increased in renal epithelial cells of distal convoluted tubules and collecting ducts, i.e., cells with a very high content of mitochondria, possibly indicating increased metabolic activity of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ashwell M, Work TS (1970) The biogenesis of mitochondria. Annu Rev Biochem 39:251–290

    Article  CAS  PubMed  Google Scholar 

  2. Blank M, Goodman R (1999) Electromagnetic fields may act directly on DNA. J Cell Biochem 75:369–374

    Article  CAS  PubMed  Google Scholar 

  3. Bucher O, Wartenberg H (1989) Cytologie, Histologie und mikroskopische Anatomie des Menschen, 11th edn. Huber, Bern

  4. Cavanagh JB, Lewis PD (1969) Perfusion-fixation, colchicine and mitotic activity in the adult rat brain. J Anat 104:341–350

    CAS  PubMed  Google Scholar 

  5. Cleaver JE, Thomas GH (1981) Measurement of unscheduled synthesis by autoradiography. In: Friedberg EC, Hanawalt PC (eds) DNA repair. A laboratory manual of reasearch procedures, vol 1B. Dekker, New York, pp 277–287

  6. Dørup J (1985) Ultrastructure of distal nephron cells in rat renal cortex. J Ultrastruct Res 92:101–118

    PubMed  Google Scholar 

  7. Forgács Z, Thuróczy G, Paksy K, Szabó LD (1998) Effect of sinusoidal 50 Hz magnetic field on the testosterone production of mouse primary Leydig cell culture. Bioelectromagnetics 19:429–431

    Article  PubMed  Google Scholar 

  8. Giuffrida AM, Gadaleta MN, Serra I, Remis M, Geremia E, Del Prete G, Saccone C (1979) Mitochondrial DNA, RNA and protein synthesis in different regions of developing rat brain. Neurochem Res 4:37–52

    CAS  PubMed  Google Scholar 

  9. Hauke C, Ackermann I, Korr H (1995) Cell proliferation in the subependymal layer of the adult mouse in vivo and in vitro. Cell Prolif 28:595–607

    CAS  PubMed  Google Scholar 

  10. Hebel R, Stromberg MW (1986) Anatomy and embryology of the laboratory rat. BioMed Verlag, Wörthsee

  11. Henderson C (1989) Aminoalkylsilane: an inexpensive, simple preparation for slide adhesion. J Histotechnol 12:123–124

    Google Scholar 

  12. Korr H (1985) Determination of correction factors of3H-β-self absorption for quantitative evaluation of grain number in autoradiographic studies: interferometric studies of different cell types in the mouse brain. Histochemistry 83:65–70

    CAS  PubMed  Google Scholar 

  13. Korr H, Schmidt H (1988) An improved procedure for background correction in autoradiography. Histochemistry 88:407–410

    CAS  PubMed  Google Scholar 

  14. Korr H, Schmidt H (1989) A new procedure for correcting background in quantitative autoradiographic studies. Acta Histochem Suppl XXXVII: 149–155

    Google Scholar 

  15. Korr H, Schultze B (1989) Unscheduled DNA synthesis in various types of cells of the mouse brain in vivo. Exp Brain Res 74:573–578

    CAS  PubMed  Google Scholar 

  16. Korr H, Koeser K, Oldenkott S, Schmidt H, Schultze B (1989) X-ray dose-effect relationship on unscheduled DNA synthesis and spontaneous unscheduled DNA synthesis in mouse brain cells studied in vivo. Radiat Environ Biophys 28:13–26

    CAS  PubMed  Google Scholar 

  17. Korr H, Bauer K, Bunzeck AS, Nacken M, Karbach FT (1997) Correction factors of3H-β-self-absorption for quantitative autoradiography of different cell types in the brain of pre- and postnatal mice. Histochem Cell Biol 108:537–541

    Article  CAS  PubMed  Google Scholar 

  18. Korr H, Philippi V, Helg C, Schiefer J, Graeber MB, Kreutzberg GW (1997) Unscheduled DNA synthesis and mitochondrial DNA synthetic rate following injuring of the facial nerve. Acta Neuropathol 94:557–566

    Article  CAS  PubMed  Google Scholar 

  19. Korr H, Rohde HT, Benders J, Dafotakis M, Grolms N, Schmitz C (2001) Neuron loss during early adulthood following prenatal low-dose X-irradiation in the mouse brain. Int J Radiat Biol 77:567–580

    Article  CAS  PubMed  Google Scholar 

  20. Laeng H, Schneider R, Bolli A, Zimmermann T, Schaffner R, Schindler R (1988) Participation of mitochondrial proliferation in morphological differentiation of murine mastocytoma cells. Exp Cell Res 179:222–232

    CAS  PubMed  Google Scholar 

  21. Lai H, Singh NP (1997) Acute exposure to a 60 Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics 18:156–165

    Google Scholar 

  22. Malyapa RS, Ahern EW, Bi C, Straube WL, LaRegina M, Pickard WF, Roti Roti JL (1998) DNA damage in rat brain cells after in vivo exposure to 2,450 MHz electromagnetic radiation and various methods of euthanasia. Radiat Res 149:637–645

    CAS  PubMed  Google Scholar 

  23. Maurer W, Primbsch E (1964) Grösse der β-Selbstabsorption bei der3H-Autoradiographie. Exp Cell Res 33:8–18

    CAS  PubMed  Google Scholar 

  24. McCann J, Dietrich F, Rafferty C (1998) The genotoxic potential of electric and magnetic fields: an update. Mutat Res 411:45–86

    CAS  PubMed  Google Scholar 

  25. McNamee JP, Bellier PV, McLean JRN, Marro L, Gajda GB, Thansandote A (2002) DNA damage and apoptosis in the immature mouse cerebellum after acute exposure to a 1 mT, 60 Hz magnetic field. Mutat Res 513:121–133

    Article  CAS  PubMed  Google Scholar 

  26. Meneghini R (1997) Iron homeostasis, oxidative stress, and DNA damage. Free Rad Biol Med 23:783–792

    CAS  PubMed  Google Scholar 

  27. Moos T (1996) Immunohistochemical localization of intraneuronal transferrin receptor immunoreactivity in the adult mouse central nervous system. J Comp Neurol 375:675–692

    Article  CAS  PubMed  Google Scholar 

  28. Moulder JE, Erdreich LS, Malyapa RS, Merritt J, Pickard WF, Vijayalaxmi (1999) Cell phones and cancer: what is the evidence for a connection? Radiat Res 151:513–531

    CAS  PubMed  Google Scholar 

  29. Nagino M, Tanaka M, Nishikimi M, Nimura Y, Kubota H, Kanai M (1989) Stimulated rat liver mitochondrial biogenesis after partial hepatectomy. Cancer Res 49:4913–4918

    CAS  PubMed  Google Scholar 

  30. Olive PL (1998) Molecular approaches for detecting DNA damage. In: Nickoloff JA, Hoekstra MF (eds) DNA damage and repair. Humana Press, Totowa, pp 539–557

  31. Pysh JJ, Khan T (1972) Variations in mitochondrial structure and content of neurons and neuroglia in rat brain: an electron microscopic study. Brain Res 36:1–18

    Article  CAS  PubMed  Google Scholar 

  32. Schmitz C (1994) Spontane DNA-Reparatur-Syntheserate verschiedener Zellarten in Cortex und Hippocampus der Maus als Funktion des Lebensalters. M.D. thesis, RWTH Aachen University

  33. Schmitz C, Materne S, Korr H (1999) Cell-type-specific differences in age-related changes of DNA repair in the mouse brain—molecular basis for a new approach to understand the selective neuronal vulnerability in Alzheimer’s disease. J Alzheimer Dis 1:387–407

    CAS  Google Scholar 

  34. Schmitz C, Axmacher B, Zunker U, Korr H (1999) Age-related changes of DNA repair and mitochondrial DNA synthesis in the mouse brain. Acta Neuropathol 97:71–81

    Article  CAS  PubMed  Google Scholar 

  35. Singh NP, Lai H (1998) 60 Hz magnetic field exposure induces DNA crosslinks in rat brain cells. Mutat Res 400:313–320

    CAS  PubMed  Google Scholar 

  36. Smith QR, Rabin O, Chikhale EG (1997) Delivery of metals to brain and the role of the blood-brain barrier. In: Connor JR (ed) Metals and oxidative damage in neurological disorders. Plenum Press, New York, pp 113–130

  37. Stillström J (1963) Grain count corrections in autoradiography. Int J Appl Radiat Isot 14:113–118

    Article  PubMed  Google Scholar 

  38. Stillström J (1965) Grain count corrections in autoradiography. II. Int J Appl Radiat Isot 16:357–363

    Article  PubMed  Google Scholar 

  39. Stumpf WE, Sar M, Zuber TJ, Soini E, Tuohimaa P (1981) Quantitative assessment of steroid hormone binding sites by thaw-mount autoradiography. J Histochem Cytochem 29 (Suppl 1A):201–206

    Google Scholar 

  40. Svedenstål BM, Johanson KJ. Mattsson MO, Paulsson LE (1999) DNA damage, cell kinetics and ODC activities studied in CBA mice exposed to electromagnetic fields generated by transmission lines. In vivo 13:507–514

    CAS  PubMed  Google Scholar 

  41. Svedenstål BM, Johanson KJ, Mild KH (1999) DNA damage induced in brain cells of CBA mice exposed to magnetic fields. In vivo 13:551–552

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Reinhard Kluge (Institut für Versuchstierkunde, RWTH Aachen University) and his team for providing the mice and taking care of them during MF exposure. The skilful technical assistance of Ms. Michaela Nicolau is gratefully acknowledged. This study was supported by the START program of the Faculty of Medicine at the RWTH Aachen University, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Korr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, C., Keller, E., Freuding, T. et al. 50-Hz magnetic field exposure influences DNA repair and mitochondrial DNA synthesis of distinct cell types in brain and kidney of adult mice. Acta Neuropathol 107, 257–264 (2004). https://doi.org/10.1007/s00401-003-0799-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-003-0799-6

Keywords

Navigation