Skip to main content
Log in

Effect of H2O and reduced graphene oxide on the structure and rheology of self-healing, stimuli responsive catecholic gels

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A catechol-containing organogel based on random copolymers of N-isopropylacrylamide (NIPAM) and dopamine methacrylate (NIDO5%) in dimethyl formamide (DMF) was supramolecularly crosslinked by NaBH4 in the presence of reduced graphene oxide (RGO). The focus of the investigations was on the influence of H2O and RGO in the system, which leads to a softening and stiffening, respectively. Whereas RGO tends to restack partially, this tendency was not found in the gels, suggesting a surface coverage of RGO with NIDO5% due to H-bonding and surface crosslinking attributed to the interactions of polar groups of polymer chains with carboxylic and carbonyl groups of RGO sheets proven by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray diffraction and spectroscopy (XRD). While RGO leads to the system becoming more brittle, its presence does not lead to an excessive loss of the self-healing characteristics, but it clearly stabilizes the gel when swollen with H2O, as can be seen from the significantly higher modulus and the retained self-healing behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anderson BJ, Zukoski CF (2009) Rheology and microstructure of entangled polymer nanocomposite melts. Macromolecules 42(21):8370–8384

    Article  Google Scholar 

  • Bai H, Li C, Wang X, Shi G (2011) On the gelation of graphene oxide. J Phys Chem C 115(13):5545–5551

    Article  Google Scholar 

  • Brassinne J, Stevens AM, Van Ruymbeke E, Gohy J-F, Fustin C-A (2013) Hydrogels with dual relaxation and two-step gel–sol transition from heterotelechelic polymers. Macromolecules 46(22):9134–9143

    Article  Google Scholar 

  • Brubaker CE, Kissler H, Wang LJ, Kaufman DB, Messersmith PB (2010) Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials 31(3):420–7

    Article  Google Scholar 

  • Cassagnau P (2003) Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state. Polymer 44(8):2455–2462

    Article  Google Scholar 

  • Castelletto V, Hamley IW, Ma Y, Bories-Azeau X, Armes SP, Lewis AL (2004) Microstructure and physical properties of a pH-responsive gel based on a novel biocompatible ABA-type triblock copolymer. Langmuir 20(10):4306–9

    Article  Google Scholar 

  • Chaterji S, Kwon IK, Park K (2007) Smart polymeric gels: redefining the limits of biomedical devices. Prog Polym Sci 32(8–9):1083–1122

    Article  Google Scholar 

  • Cheng C, Li S, Zhao J, Li X, Liu Z, Ma L, Zhang X, Sun S, Zhao C (2013a) Biomimetic assembly of polydopamine-layer on graphene: mechanisms, versatile 2D and 3D architectures and pollutant disposal. Chem Eng J 228:468–481

    Article  Google Scholar 

  • Cheng C, Nie SQ, Li S, Peng H, Yang H, Ma L, Sun SD, Zhao CS (2013b) Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. J Mater Chem B 1(3):265–275

    Article  Google Scholar 

  • Choong GYH, Focatiis DSA, Hassell DG (2013) Viscoelastic melt rheology and time–temperature superposition of polycarbonate–multi-walled carbon nanotube nanocomposites. Rheol Acta 52(8–9):801–814

    Article  Google Scholar 

  • Chunder A, Liu J, Zhai L (2010) Reduced graphene oxide/poly(3-hexylthiophene) supramolecular composites. Macromol Rapid Commun 31(4):380–4

    Article  Google Scholar 

  • Clément F, Johner A, Joanny JF, Semenov AN (2000) Stress relaxation in telechelic gels. 1. Sticker extraction. Macromolecules 33(16):6148–6158

    Article  Google Scholar 

  • Cong H-P, Wang P, Yu S-H (2013) Stretchable and self-healing graphene oxide–polymer composite hydrogels: a dual-network design. Chem Mater 25(16):3357–3362

    Article  Google Scholar 

  • Dang TT, Pham VH, Hur SH, Kim EJ, Kong BS, Chung JS (2012) Superior dispersion of highly reduced graphene oxide in N, N-dimethylformamide. J Colloid Interface Sci 376(1):91–96

    Article  Google Scholar 

  • Dong S, Luo Y, Yan X, Zheng B, Ding X, Yu Y, Ma Z, Zhao Q, Huang F (2011) A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition. Angew Chem Int Ed Engl 50(8):1905–9

    Article  Google Scholar 

  • Dong S, Zheng B, Xu D, Yan X, Zhang M, Huang F (2012) A crown ether appended super gelator with multiple stimulus responsiveness. Adv Mater 24(24):3191–5

    Article  Google Scholar 

  • D'souza F, Kadish KM (2012) Handbook of carbon nano materials, World Scientific

  • Faure E, Falentin-Daudré C, Jérôme C, Lyskawa J, Fournier D, Woisel P, Detrembleur C (2013) Catechols as versatile platforms in polymer chemistry. Prog Polym Sci 38(1):236–270

    Article  Google Scholar 

  • Fox J, Wie JJ, Greenland BW, Burattini S, Hayes W, Colquhoun HM, Mackay ME, Rowan SJ (2012) High-strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc 134(11):5362–8

    Article  Google Scholar 

  • Friedrich T, Tieke B, Stadler FJ, Bailly C, Eckert T, Richtering W (2010) Thermoresponsive copolymer hydrogels on the basis of N-isopropylacrylamide and a non-ionic surfactant monomer: swelling behavior, transparency and rheological properties. Macromolecules 43(23):9964–9971

    Article  Google Scholar 

  • Friedrich T, Tieke B, Stadler FJ, Bailly C (2011a) Improvement of elasticity and strength of poly(N-isopropylacrylamide) hydrogels upon copolymerization with cationic surfmers. Soft Matter 7(14):6590–6597

    Article  Google Scholar 

  • Friedrich T, Tieke B, Stadler FJ, Bailly C (2011b) Copolymer hydrogels of acrylic acid and a nonionic surfmer: pH-induced switching of transparency and volume and improved mechanical stability. Langmuir 27(6):2997–3005

    Article  Google Scholar 

  • Ghavaminejad A, Hashmi S, Joh HI, Lee S, Vatankhah Varnoosfaderani M, Lee YS, Stadler FJ (2014) Network formation in graphene oxide composites with surface grafted poly-N-isopropyl amide chains in aqueous solution characterized by rheological experiments. Phys Chem Chem Phys 16:8675–8685

    Article  Google Scholar 

  • Guillet P, Mugemana C, Stadler FJ, Schubert US, Fustin C-A, Bailly C, Gohy J-F (2009) Connecting micelles by metallo-supramolecular interactions: towards stimuli responsive hierarchical materials. Soft Matter 5(18):3409

    Article  Google Scholar 

  • Hamley IW, Cheng G, Castelletto V (2011) A thermoresponsive hydrogel based on telechelic PEG end-capped with hydrophobic dipeptides. Macromol Biosci 11(8):1068–78

    Article  Google Scholar 

  • Hashmi S, Ghavaminejad A, Obiweluozor FO, Vatankhah-Varnoosfaderani M, Stadler FJ (2012) Supramolecular interaction controlled diffusion mechanism and improved mechanical behavior of hybrid hydrogel systems of zwitterions and CNT. Macromolecules 45(24):9804–9815

    Article  Google Scholar 

  • He L, Fullenkamp DE, Rivera JG, Messersmith PB (2011) pH responsive self-healing hydrogels formed by boronate-catechol complexation. Chem Commun (Camb) 47(26):7497–9

    Article  Google Scholar 

  • Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin-film particles of graphite oxide 1. Carbon 42(14):2929–2937

    Google Scholar 

  • Huang Y, Zeng M, Ren J, Wang J, Fan L, Xu Q (2012) Preparation and swelling properties of graphene oxide/poly(acrylic acid-co-acrylamide) super-absorbent hydrogel nanocomposites. Colloids Surf A Physicochem Eng Asp 401:97–106

    Article  Google Scholar 

  • Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluid. J Non-Newtonian Fluid Mech 107:51–65

    Article  Google Scholar 

  • Jeon EK, Seo E, Lee E, Lee W, Um MK, Kim BS (2013) Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications. Chem Commun (Camb) 49(33):3392–4

    Article  Google Scholar 

  • Kang SM, Park S, Kim D, Park SY, Ruoff RS, Lee H (2011) Simultaneous reduction and surface functionalization of graphene oxide by mussel-inspired chemistry. Adv Funct Mater 21(1):108–112

    Article  Google Scholar 

  • Khalatur PG, Khokhlov AR (1996) Computer simulation of solutions of telechelic polymers with associating end-groups. Macromol Theory Simul 5(5):877–899

    Article  Google Scholar 

  • Koike A, Nemoto N, Inoue T, Osaki K (1995) Dynamic light scattering and dynamic viscoelasticity of poly(vinyl alcohol) in aqueous borax solutions. 1. Concentration effect. Macromolecules 28(7):2339–2344

    Article  Google Scholar 

  • Ku SH, Lee M, Park CB (2013) Carbon-based nanomaterials for tissue engineering. Adv Healthc Mater 2(2):244–260

    Article  Google Scholar 

  • Kujawa P, Watanabe H, Tanaka F, Winnik FM (2005) Amphiphilic telechelic poly(N-isopropylacrylamide) in water: from micelles to gels. Eur Phys J E Soft Matter 17(2):129–37

    Article  Google Scholar 

  • Kumar R, Raghavan SR (2010) Thermothickening in solutions of telechelic associating polymers and cyclodextrins. Langmuir 26(1):56–62

    Article  Google Scholar 

  • Kundu A, Layek RK, Kuila A, Nandi AK (2012) Highly fluorescent graphene oxide-poly(vinyl alcohol) hybrid: an effective material for specific Au3+ ion sensors. ACS Appl Mater Interfaces 4(10):5576–5582

    Article  Google Scholar 

  • Kurth DG (2008) Metallo-supramolecular modules as a paradigm for materials science. Sci Technol Adv Mater 9(1):014103

    Article  Google Scholar 

  • Lee JH, Gustin JP, Chen T, Payne GF, Raghavan SR (2005) Vesicle--biopolymer gels: networks of surfactant vesicles connected by associating biopolymers. Langmuir 21(1):26–33

    Article  Google Scholar 

  • Lee DY, Yoon S, Oh YJ, Park SY, In I (2011) Thermo-responsive assembly of chemically reduced graphene and poly(N-isopropylacrylamide). Macromol Chem Phys 212(4):336–341

    Article  Google Scholar 

  • Lehn J-M (1995) Supramolecular chemistry—concepts and perspectives. VCH, Weinheim

    Google Scholar 

  • Lehn JM, Mascal M, Decian A, Fischer J (1992) Molecular ribbons from molecular recognition directed self-assembly of self-complementary molecular-components. J Chem Soc-Perkin Trans 2(4):461–467

    Article  Google Scholar 

  • Liao D, Dai S, Tam KC (2007) Rheological properties of a telechelic associative polymer in the presence of alpha- and methylated beta-cyclodextrins. J Phys Chem B 111(2):371–8

    Article  Google Scholar 

  • Lu CH, Zahedi P, Forman A, Allen C (2014) Multi-arm PEG/silica hydrogel for sustained ocular drug delivery. J Pharm Sci 103(1):216–226

    Article  Google Scholar 

  • Mandal S, Lee MV, Hill JP, Vinu A, Ariga K (2010) Recent developments in supramolecular approach for nanocomposites. J Nanosci Nanotechnol 10(1):21–33

    Article  Google Scholar 

  • Menyo MS, Hawker CJ, Waite JH (2013) Versatile tuning of supramolecular hydrogels through metal complexation of oxidation-resistant catechol-inspired ligands. Soft Matter 9(43):10314–10323

    Article  Google Scholar 

  • Miller SG, Bauer JL, Maryanski MJ, Heimann PJ, Barlow JP, Gosau J-M, Allred RE (2010) Characterization of epoxy functionalized graphite nanoparticles and the physical properties of epoxy matrix nanocomposites. Compos Sci Technol 70(7):1120–1125

    Article  Google Scholar 

  • Mingos DMP (2004) Supramolecular assembly via hydrogen bonds. Springer, Berlin

    Google Scholar 

  • Münstedt H, Katsikis N, Kaschta J (2008) Rheological properties of poly(methyl methacrylate)/nanoclay composites as investigated by creep recovery in shear. Macromolecules 41(24):9777–9783

    Article  Google Scholar 

  • Olsen BD, Johnson JA (2013) Reply to stadler: combining network disassembly spectrometry with rheology/spectroscopy. PNAS 110(22):E1973

    Article  Google Scholar 

  • Ott C, Ulbricht C, Hoogenboom R, Schubert US (2012) Metallo-supramolecular materials based on amine-grafting onto polypentafluorostyrene. Macromol Rapid Commun 33(6–7):556–61

    Article  Google Scholar 

  • Palser AHR (1999) Interlayer interactions in graphite and carbon nanotubes. Phys Chem Chem Phys 1(18):4459–4464

    Article  Google Scholar 

  • Park JK, Kim KS, Yeom J, Jung HS, Hahn SK (2012) Facile surface modification and application of temperature responsive poly(N-isopropylacrylamide-co-dopamine methacrylamide). Macromol Chem Phys 213(20):2130–2135

    Article  Google Scholar 

  • Phadke A, Zhang C, Arman B, Hsu CC, Mashelkar RA, Lele AK, Tauber MJ, Arya G, Varghese S (2012) Rapid self-healing hydrogels. Proc Natl Acad Sci U S A 109(12):4383–4388

    Article  Google Scholar 

  • Sahoo NG, Jung YC, Yoo HJ, Cho JW (2006) Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromol Chem Phys 207(19):1773–1780

    Article  Google Scholar 

  • Sangeetha NM, Maitra U (2005) Supramolecular gels: functions and uses. Chem Soc Rev 34(10):821–36

    Article  Google Scholar 

  • Schmidt M, Münstedt H (2002a) On the elastic properties of model suspensions as investigated by creep recovery measurement in shear. Rheol Acta 41(3):205–210

    Article  Google Scholar 

  • Schmidt M, Münstedt H (2002b) Reological behaviour of concentrated monodisperse suspensions as a function of preshear conditions and temperature: an experimental study. Rheol Acta 41(3):193–204

    Article  Google Scholar 

  • Shen J, Yan B, Li T, Long Y, Li N, Ye M (2012) Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos A: Appl Sci Manuf 43(9):1476–1481

    Article  Google Scholar 

  • Sijbesma RP, Kentgens APM, Lutz ETG, Van Der Maas JH, Nolte RJM (1993) Binding features of molecular clips derived from diphenylglycoluril. J Am Chem Soc 115(20):8999–9005

    Article  Google Scholar 

  • Sim HG, Ahn KH, Lee SJ (2003) Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: a guideline for classification. J Non-Newtonian Fluid Mech 112(2–3):237–250

    Article  Google Scholar 

  • South AB, Lyon LA (2010) Autonomic self-healing of hydrogel thin films. Angew Chem Int Ed Engl 49(4):767–71

    Article  Google Scholar 

  • Stadler FJ (2013) Quantifying primary loops in polymer gels by linear viscoelasticity. Proc Natl Acad Sci U S A 110(22):E1972

    Article  Google Scholar 

  • Stadler FJ, Friedrich T, Kraus K, Tieke B, Bailly C (2013) Elongational rheology of NIPAM-based hydrogels. Rheol Acta 52(5):413–423

    Article  Google Scholar 

  • Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–6

    Article  Google Scholar 

  • Sun S, Wu P (2011) A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J Mater Chem 21(12):4095

    Article  Google Scholar 

  • Suzuki S, Uneyama T, Inoue T, Watanabe H (2012) Nonlinear rheology of telechelic associative polymer networks: shear thickening and thinning behavior of hydrophobically modified ethoxylated urethane (HEUR) in aqueous solution. Macromolecules 45(2):888–898

    Article  Google Scholar 

  • Tanaka F (2000) Thermoreversible gelation strongly coupled to polymer conformational transition. Macromolecules 33(11):4249–4263

    Article  Google Scholar 

  • Tanaka F, Koga T, Kaneda I, Winnik FM (2011) Hydration, phase separation and nonlinear rheology of temperature-sensitive water-soluble polymers. J Phys Condens Matter 23(28):284105

    Article  Google Scholar 

  • Tripathi A, Tam KC, Mckinley GH (2006) Rheology and dynamics of associative polymers in shear and extension: theory and experiments. Macromolecules 39(5):1981–1999

    Article  Google Scholar 

  • Tsitsilianis C, Iliopoulos I, Ducouret G (2000) An associative polyelectrolyte End-capped with short polystyrene chains. Synthesis and rheological behavior. Macromolecules 33(8):2936–2943

    Article  Google Scholar 

  • Tung VC, Kim J, Cote LJ, Huang J (2011) Sticky interconnect for solution-processed tandem solar cells. J Am Chem Soc 133(24):9262–5

    Article  Google Scholar 

  • Vatankhah-Varnoosfaderani M, Ghavaminejad A, Hashmi S, Stadler FJ (2013) Mussel-inspired pH-triggered reversible foamed multi-responsive gel—the surprising effect of water. Chem Commun (Camb) 49(41):4685–7

    Article  Google Scholar 

  • Vatankhah-Varnoosfaderani M, Hashmi S, Ghavaminejad A, Stadler FJ (2014b) Rapid self-healing and triple stimuli responsiveness of a supramolecular polymer gel based on boron–catechol interactions in a novel water-soluble mussel-inspired copolymer. Polym Chem 5(2):512–523

    Article  Google Scholar 

  • Watanabe H, Sato T, Osaki K, Aoki Y, Li L, Kakiuchi M, Yao ML (1998) Rheological images of poly(vinyl chloride) gels. 4. Nonlinear behavior in a critical gel state. Macromolecules 31(13):4198–4204

    Article  Google Scholar 

  • Whiteside NJ, Wallace GG, In Het Panhuis M (2013) Preparation and characterisation of graphene composite hydrogels. Synth Met 168:36–42

    Article  Google Scholar 

  • Yan X, Xu D, Chi X, Chen J, Dong S, Ding X, Yu Y, Huang F (2012) A multiresponsive, shape-persistent, and elastic supramolecular polymer network gel constructed by orthogonal self-assembly. Adv Mater 24(3):362–9

    Article  Google Scholar 

  • Zerkowski JA, Seto CT, Whitesides GM (1992) Solid-state structures of rosette and crinkled tape motifs derived from the cyanuric acid melamine lattice. J Am Chem Soc 114(13):5473–5475

    Article  Google Scholar 

  • Zhang N, Li R, Zhang L, Chen H, Wang W, Liu Y, Wu T, Wang X, Wang W, Li Y, Zhao Y, Gao J (2011) Actuator materials based on graphene oxide/polyacrylamide composite hydrogels prepared by in situ polymerization. Soft Matter 7(16):7231

    Article  Google Scholar 

  • Zhang M, Xu D, Yan X, Chen J, Dong S, Zheng B, Huang F (2012) Self-healing supramolecular gels formed by crown ether based host-guest interactions. Angew Chem Int Ed Engl 51(28):7011–5

    Article  Google Scholar 

  • Zhou H, Woo J, Cok AM, Wang M, Olsen BD, Johnson JA (2012) Counting primary loops in polymer gels. PNAS 109(47):19119–24

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial aid from the National Research Foundation of Korea (110100713, 2015–020449), the National Science Foundation of China (21574086), Nanshan District Key Lab for Biopolymers and Safety Evaluation (No. KC2014ZDZJ0001A), and Shenzhen City High Level Talent Program and Shenzhen Sci & Tech research grant (ZDSYS201507141105130, JCYJ20140509172719311). The authors would also like to thank the staff of the CBNU central lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian J. Stadler.

Additional information

Amin GhavamiNejad and Saud Hashmi contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 219 kb)

(AVI 21078 kb)

(AVI 25045 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GhavamiNejad, A., Hashmi, S., Vatankhah-Varnoosfaderani, M. et al. Effect of H2O and reduced graphene oxide on the structure and rheology of self-healing, stimuli responsive catecholic gels. Rheol Acta 55, 163–176 (2016). https://doi.org/10.1007/s00397-015-0906-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-015-0906-3

Keywords

Navigation