Skip to main content
Log in

The mechanism of stabilization of silver nanoparticles by chitosan in carbonic acid solutions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The aim of the current study was to investigate the growth mechanisms of the silver nanoparticles (Ag NPs) in chitosan macrogels and microgels acting both as reductants and stabilizing agents in self-neutralizing, biocompatible, and environmentally benign carbonic acid solutions. The chitosan-hydroquinone microgels loaded with Ag NPs incorporated in carbonic acid solutions were successfully prepared. However, it was found that during the reduction of nanoparticles by hydrogen, the microgels tend to deteriorate. Yet, it was found that the duration of the process of silver reduction by chitosan in the composite macrogels obtained in a solution of carbonic acid took no more than 1 month. The process of the reduction was accompanied by the appearance of relatively small aggregates of Ag NPs uniformly distributed in the volume of the hydrogel. Such a “gentle” reduction of Ag NPs allows to avoid the loss of mechanical stability of the gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles : green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96. https://doi.org/10.1016/j.cis.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  2. Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev. 44:5778–5792. https://doi.org/10.1039/c4cs00363b

    Article  CAS  PubMed  Google Scholar 

  3. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan - A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014. https://doi.org/10.1016/j.progpolymsci.2011.02.001

    Article  CAS  Google Scholar 

  4. Yi H, Wu L, Bentley WE et al (2005) Biofabrication with Chitosan. Biomacromolecules 6:2881–2894. https://doi.org/10.1021/bm050410l

    Article  CAS  PubMed  Google Scholar 

  5. Ishihara M, Nguyen VQ, Mori Y et al (2015) Adsorption of silver nanoparticles onto different surface structures of chitin/chitosan and correlations with antimicrobial activities. Int J Mol Sci 16:13973–13,988. https://doi.org/10.3390/ijms160613973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boufi S, Vilar MR, Ferraria AM, Botelho do Rego AM (2013) In situ photochemical generation of silver and gold nanoparticles on chitosan. Colloids Surfaces A Physicochem Eng Asp 439:151–158. https://doi.org/10.1016/j.colsurfa.2012.12.036

    Article  CAS  Google Scholar 

  7. Rhim JW, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822. https://doi.org/10.1021/jf060658h

    Article  CAS  PubMed  Google Scholar 

  8. Xie Y, Liao X, Zhang J et al (2018) Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing. Int J Biol Macromol 119:402–412. https://doi.org/10.1016/j.ijbiomac.2018.07.060

    Article  CAS  PubMed  Google Scholar 

  9. Zhang J, Wei G, Keller TF et al Responsive hybrid polymeric / metallic nanoparticles for catalytic applications. Macromol Mater Eng 295(11):1049–1057. https://doi.org/10.1002/mame.201000204

  10. Novikov IV, Pigaleva MA, Abramchuk SS et al (2018) Chitosan composites with Ag nanoparticles formed in carbonic acid solutions. Carbohydr Polym 190:103–112. https://doi.org/10.1016/j.carbpol.2018.02.076

    Article  CAS  PubMed  Google Scholar 

  11. Pigaleva MA, Elmanovich IV, Kononevich YN et al (2015) A biphase H2O/CO2 system as a versatile reaction medium for organic synthesis. RSC Adv 5:103573–103,608. https://doi.org/10.1039/C5RA18469J

    Article  CAS  Google Scholar 

  12. Pigaleva MA, Elmanovich IV, Temnikov MN (2016) Organosilicon compounds in supercritical carbon dioxide: synthesis, polymerization, modification, and production of new materials. Pol Sci Ser B 58:235–270. https://doi.org/10.1134/S1560090416030118

    Article  CAS  Google Scholar 

  13. Wei D, Ye Y, Jia X et al (2010) Chitosan as an active support for assembly of metal nanoparticles and application of the resultant bioconjugates in catalysis. Carbohydr Res 345:74–81. https://doi.org/10.1016/j.carres.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  14. Vimala K, Mohan YM, Sivudu KS et al (2010) Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. Colloids Surfaces B Biointerfaces 76:248–258. https://doi.org/10.1016/j.colsurfb.2009.10.044

    Article  CAS  PubMed  Google Scholar 

  15. Stoševski I et al (2016) Radiolitically synthesized nano Ag / C catalysts for oxygen reduction and borohydride oxidation reactions in alkaline media, for potential applications in fuel cells. Energy 101:79–90. https://doi.org/10.1016/j.energy.2016.02.003

    Article  CAS  Google Scholar 

  16. Nguyen NT et al (2014) Microwave-assisted synthesis of silver nanoparticles using chitosan : a novel approach. Mater Manuf Processes 29:418–421. https://doi.org/10.1080/10426914.2014.892982

    Article  CAS  Google Scholar 

  17. Sun Z, Lv F, Cao L et al (2015) Angewandte multistimuli-responsive, moldable supramolecular hydrogels cross- linked by ultrafast complexation of metal ions and biopolymers. Angewandte:7944–7948. https://doi.org/10.1002/anie.201502228

  18. Pigaleva MA, Portnov IV, Rudov AA et al (2014) Stabilization of chitosan aggregates at the nanoscale in solutions in carbonic acid. Macromolecules 47:5749–5758. https://doi.org/10.1021/ma501169c

    Article  CAS  Google Scholar 

  19. Li H et al (2019) Electroactive and degradable supramolecular microgels. Soft Matter 15:8589–8602. https://doi.org/10.1039/C9SM01390C

    Article  CAS  PubMed  Google Scholar 

  20. Spycher N, Ruess K, Ennis-King J (2003) CO2 - H2O mixtures in the geological sequestration of CO2 . I . assessment and calculation of mutual solubilities from 12 to 100 °C and up to 600 bar. Geochimica et Cosmochimica Acta 67:3015–3031. https://doi.org/10.1016/S0016-7037(03)00273-4

    Article  CAS  Google Scholar 

  21. Toews KL, Shroll RM, Wai CM, Smart NG (1995) pH-Defining equilibrium between water and supercritical CO2. influence on SFE of organics and metal chelates. Anal Chem 67:4040–4043. https://doi.org/10.1021/ac00118a002

    Article  CAS  Google Scholar 

  22. Swanson HE, Tatge E (1953) Standard X-ray diffraction powder patterns. NBS Circular 539(1):23

    Google Scholar 

  23. Masse R, Guitel JC, Durif A (1979) Structure du carbonate d’argent; erratum. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 35:2823–2823. https://doi.org/10.1107/s0567740879010700

    Article  CAS  Google Scholar 

  24. Pigaleva MA, Bulat MV, Bondarenko GN et al (2015) Formation of easy-to-recover polystyrene- block -Poly(4- vinylpyridine) micelles decorated with Pd nanoparticles in solutions of self-neutralizing carbonic acid. ACS Macro Lett 4(7):661–664. https://doi.org/10.1021/acsmacrolett.5b00281

    Article  CAS  Google Scholar 

  25. Song J, Hou J, Tian L et al (2015) Growth of giant silver dendrites on layer-by-layer assembled films. Polymer (Guildf) 63:237–243. https://doi.org/10.1016/j.polymer.2015.03.009

    Article  CAS  Google Scholar 

  26. Papp S, Patakfalvi R, Dékánya I (2007) Formation and stabilization of noble metal nanoparticles. Croat Chem Acta 80:493–502 https://hrcak.srce.hr/file/29078

    CAS  Google Scholar 

  27. Biao L, Tan S, Wang Y et al (2017) Synthesis, characterization and antibacterial study on the chitosan-functionalized Ag nanoparticles. Mater Sci Eng C 76:73–80. https://doi.org/10.1016/j.msec.2017.02.154

    Article  CAS  Google Scholar 

  28. Gao J, Fu J, Lin C, et al. (2004) Formation and Photoluminescence of silver nanoparticles stabilized by a two-armed polymer with a crown ether core. 9775–9779. https://doi.org/10.1021/la049197p

  29. Xie Y, Liao X, Zhang J et al (2018) Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing. Int. J. Biological Macromolecules 119:402–412. https://doi.org/10.1016/j.ijbiomac.2018.07.060

  30. Sun Z, Lv F, Cao L et al (2015) Multistimuli-responsive, moldable supramolecular hydrogels cross-linked by ultrafast complexation of metal ions and biopolymers. Angew Chem Int Ed 54:7944–7948. https://doi.org/10.1002/anie.201502228

  31. Wei D, Qian W (2008) Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids and Surfaces B: Biointerfaces 62:136–142. https://doi.org/10.1016/j.colsurfb.2007.09.030

  32. Kumar-krishnan S, Prokhorov E, Hernández-iturriaga M et al (2015) Chitosan / silver nanocomposites : synergistic antibacterial action of silver nanoparticles and silver ions. Eur Polym J 67:242–251. https://doi.org/10.1016/j.eurpolymj.2015.03.066

    Article  CAS  Google Scholar 

  33. Swatek AL, Dong Z, Shaw Jr J, Rafiq Islam M (2010) Self-assembly of silver nanoparticles into dendritic flowers from aqueous solution. J Exper Nanosci 5(1):10–16. https://doi.org/10.1080/17458080903115387

    Article  CAS  Google Scholar 

  34. Wu Y et al (2005) In situ formation of Ag flowerlike and dendritic nanostructures in aqueous solution and hydrolysis of an amphiphilic block copolymer. Carbohydr Polym 59:165–171. https://doi.org/10.1088/0957-4484/16/10/011

    Article  CAS  Google Scholar 

  35. Li X, Lenhart JJ, Walker HW (2012) Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 28:1095–1104. https://doi.org/10.1021/la202328n

  36. Nunthanid J, Puttipipatkhachorn S, Yamamoto K et al (2001) Physical properties and molecular behavior of chitosan films. Drug development and industrial pharmacy 27(2):143–157. https://doi.org/10.1081/DDC-100000481

    Article  CAS  PubMed  Google Scholar 

  37. Cervera MF, Heinämäki J, Krogars K et al (2004) Solid-state and mechanical properties of aqueous chitosan-amylose starch films plasticized with polyols AAPS. PharmSciTech 5(1):15. https://doi.org/10.1208/pt050115

    Article  Google Scholar 

  38. Zhitomirsky I, Hashambhoy A (2007) Chitosan-mediated electrosynthesis of organic–inorganic nanocomposites. J Mat Proc Tech 191:68–72. https://doi.org/10.1016/j.jmatprotec.2007.03.043

    Article  CAS  Google Scholar 

  39. Pestov A, Nazirov A, Modin E et al (2015) Mechanism of Au(III) reduction by chitosan: comprehensive study with 13C and 1H NMR analysis of chitosan degradation products. Carbohydr Polym 117:70–77. https://doi.org/10.1016/j.carbpol.2014.09.030

    Article  CAS  PubMed  Google Scholar 

  40. Vo KDN, Guillon E, Dupont L et al (2014) Influence of Au(III) interactions with chitosan on gold nanoparticle formation. J Phys Chem C 118:4465–4474. https://doi.org/10.1021/jp4112316

    Article  CAS  Google Scholar 

  41. Amaral IF, Granja PL, Barbosa MA (2005) Chemical modification of chitosan by phosphorylation : an XPS, FT-IR and SEM study. J Biomater Sci Polym Ed 16:1575–1593. https://doi.org/10.1163/156856205774576736

  42. Lawrie G, Keen I, Drew B et al (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS:2533–2541. https://doi.org/10.1021/bm070014y

  43. Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012) NIST X-ray photoelectron spectroscopy database, Version 4.1 National Institute of Standards and Technology, Gaithersburg, http://srdata.nist.gov/xps/

  44. Samoilova N, Krayukhina M, Naumkin A, Yamskov I (2018) Eco-friendly preparation of a magnetic catalyst for glucose oxidation combining the properties of nanometal particles and specific enzyme. Monatshefte für Chemie - Chem Mon 4. https://doi.org/10.1007/s00706-018-2156-4

  45. Naumkin A (2018) Problems in determination of Ag charge state atoms in silver nanoparticles by X-Ray photoelectron spectroscopy. Sci J Biomed Eng Biomed Sci 2(1):014–016

    Google Scholar 

  46. Al-Hada M, Peters S, Gregoratti L et al (2017) Nanoparticle formation of deposited Agn-clusters on free-standing graphene. Surf Sci 665:108–113. https://doi.org/10.1016/j.susc.2017.06.002

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Russian Foundation for Basic Research (grant no 19-03-00348-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina A. Pigaleva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, I.V., Pigaleva, M.A., Levin, E.E. et al. The mechanism of stabilization of silver nanoparticles by chitosan in carbonic acid solutions. Colloid Polym Sci 298, 1135–1148 (2020). https://doi.org/10.1007/s00396-020-04683-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04683-8

Keywords

Navigation