Skip to main content
Log in

A pH-responsive hydrogel system based on cellulose and dopamine with controlled hydrophobic drug delivery ability and long-term bacteriostatic property

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

An interpenetrating double network hydrogel based on cellulose backbone and poly-dopamine dendritic structure was successfully prepared with the advantages of controlled hydrophobic drug loading, pH-responsive ability, and long-term bacteriostatic property. 13C-NMR was used to process the structural characterization and explain the mechanism of hydrogel system’s construction. Hydrophobic drug of ciprofloxacin with carbonyl group can evenly carry in the hydrogel system, and the highest loaded ratio of ciprofloxacin was reach to 80.56%. Besides, the swelling property and the controlled drug loading ability of our prepared hydrogel were carefully studied, which showed a close relation with the hydrogel design. Moreover, the in vitro drug release experiments demonstrated that the hydrogel had an obvious pH-responsive release property of ciprofloxacin, and the result of bacteriostatic experiment also showed a long-term bacteriostatic effect on Escherichia coli, which showed potential application on biological and medical fields, including wound treatment.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027

    Article  CAS  Google Scholar 

  2. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliver Rev 64:18–23. https://doi.org/10.1016/j.addr.2012.09.010

    Article  Google Scholar 

  3. Singh NK, Lee DS (2014) In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J Control Release 193:214–227. https://doi.org/10.1016/j.jconrel.2014.04.056

    Article  CAS  PubMed  Google Scholar 

  4. Larrañeta E, Stewart S, Ervine M et al (2018) Hydrogels for hydrophobic drug delivery. Classification, synthesis and applications. J Func Biomater 9. https://doi.org/10.3390/jfb9010013

  5. Bedian L, Villalba-Rodríguez AM, Hernández-Vargas G et al (2017) Bio-based materials with novel characteristics for tissue engineering applications—a review. Int J Biol Macromol 98:837–846. https://doi.org/10.1016/j.ijbiomac.2017.02.048

    Article  CAS  PubMed  Google Scholar 

  6. Li YY, Wang B, Ma MG, Wang B (2018) Review of recent development on preparation, properties, and applications of cellulose-based functional materials. Int J Polym Sci 2018:1–18. https://doi.org/10.1155/2018/8973643

    Article  CAS  Google Scholar 

  7. Hubbe MA, Ayoub A, Daystar JS et al (2013) Enhanced absorbent products incorporating cellulose and its derivatives: a review. BioResources 8:6556–6629. https://doi.org/10.15376/biores.8.4.6556-6629

    Article  Google Scholar 

  8. Heinze T, Koschella A (2005) Carboxymethyl ethers of cellulose and starch—a review. Macromol Symp 223:13–39. https://doi.org/10.1002/masy.200550502

    Article  CAS  Google Scholar 

  9. Chang CY, Zhang LN (2011) Cellulose-based hydrogels: present status and application prospects. Carbohyd Polym 84:40–53. https://doi.org/10.1016/j.carbpol.2010.12.023

    Article  CAS  Google Scholar 

  10. Chang CY, Duan B, Cai J et al (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100. https://doi.org/10.1016/j.eurpolymj.2009.04.033

    Article  CAS  Google Scholar 

  11. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373. https://doi.org/10.3390/ma2020353

    Article  CAS  PubMed Central  Google Scholar 

  12. Li YT, Lokitz BS, Armes SP et al (2006) Synthesis of reversible shell cross-linked micelles for controlled release of bioactive agents. Macromolecules 39:2726–2728. https://doi.org/10.1021/ma0604035

    Article  CAS  Google Scholar 

  13. Bordes R, van de Ven TGM (2017) Nanocellulose: what used to be cellulose micelles. Curr Opin Colloid 29:A1–A2. https://doi.org/10.1016/j.cocis.2017.05.004

    Article  CAS  Google Scholar 

  14. Munoz SZ, Zhadan R, Acosta E (2017) Design of nonionic micelle-laden polysaccharide hydrogels for controlled delivery of hydrophobic drugs. Int J Pharmaceut 526:455–465. https://doi.org/10.1016/j.ijpharm.2017.04.062

    Article  CAS  Google Scholar 

  15. Himmelein S, Lewe V, Stuart MCA et al (2014) A carbohydrate-based hydrogel containing vesicles as responsive non-covalent cross-linkers. Chem Sci 5:1054–1058. https://doi.org/10.1039/c3sc52964a

    Article  CAS  Google Scholar 

  16. Laurén P, Lou YR, Raki M et al (2014) Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo drug release. Eur J Pharm Sci 65:79–88. https://doi.org/10.1016/j.ejps.2014.09.013

    Article  CAS  PubMed  Google Scholar 

  17. Paukkonen H, Kunnari M, Laurén P et al (2017) Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release. Int J Pharmaceut 532:269–280. https://doi.org/10.1016/j.ijpharm.2017.09.002

    Article  CAS  Google Scholar 

  18. Sellergren B, Allender CJ (2005) Molecularly imprinted polymers: a bridge to advanced drug delivery. Adv Drug Deliver Rev 57:1733–1741. https://doi.org/10.1016/j.addr.2005.07.010

    Article  CAS  Google Scholar 

  19. Alvarez-Lorenzo C, Concheiro A (2004) Molecularly imprinted polymers for drug delivery. J Chromatogr B 804:231–245. https://doi.org/10.1016/j.jchromb.2003.12.032

    Article  CAS  Google Scholar 

  20. Ochs CJ, Hong T, Such GK et al (2011) Dopamine-mediated continuous assembly of biodegradable capsules. Chem Mater 23:3141–3143. https://doi.org/10.1021/cm201390e

    Article  CAS  Google Scholar 

  21. Kaminska I, Das MR, Coffinier Y et al (2012) Reduction and functionalization of graphene oxide sheets using biomimetic dopamine derivatives in one step. Acs Appl Mater Inter 4:1016–1020. https://doi.org/10.1021/am201664n

    Article  CAS  Google Scholar 

  22. Wen Q, Liu L, Yang Q et al (2013) Dopamine-modified cationic conjugated polymer as a new platform for pH sensing and autophagy imaging. Adv Funct Mater 23:764–769. https://doi.org/10.1002/adfm.201202132

    Article  CAS  Google Scholar 

  23. Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115. https://doi.org/10.1021/cr400407a

    Article  CAS  PubMed  Google Scholar 

  24. Dreyer DR, Miller DJ, Freeman BD et al (2013) Perspectives on poly(dopamine). Chem Sci 4:3796–3802. https://doi.org/10.1039/c3sc51501j

    Article  CAS  Google Scholar 

  25. Liu M, Zeng G, Wang K et al (2016) Recent developments in polydopamine: an emerging soft matter for surface modification and biomedical applications. Nanoscale 8:16819–16840. https://doi.org/10.1039/C5NR09078D

    Article  CAS  PubMed  Google Scholar 

  26. Han L, Lu X, Liu K et al (2017) Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 11:2561–2574. https://doi.org/10.1021/acsnano.6b05318

    Article  CAS  PubMed  Google Scholar 

  27. Li L, Yan B, Yang J et al (2015) Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property. Adv Mater 27:1294–1299. https://doi.org/10.1002/adma.201405166

    Article  CAS  PubMed  Google Scholar 

  28. Han L, Lu X, Wang M, Gan D, Deng W, Wang K, Fang L, Liu K, Chan CW, Tang Y, Weng LT, Yuan H (2017) A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 13. https://doi.org/10.1002/smll.201601916

  29. Wu ZR, Zheng LF, Li Y et al (2012) Synthesis and structure–activity relationships and effects of phenylpropanoid amides of octopamine and dopamine on tyrosinase inhibition and antioxidation. Food Chem 134:1128–1131. https://doi.org/10.1016/j.foodchem.2012.02.152

    Article  CAS  PubMed  Google Scholar 

  30. Sun PY, Tian LY, Zheng Z et al (2009) Dopamine-containing mussel mimetic polyurethane. Acta Polym Sin 8:803–808. https://doi.org/10.3724/sp.j.1105.2009.00803

    Article  Google Scholar 

  31. Bezuglov V, Bobrov M, Gretskaya N et al (2001) Synthesis and biological evaluation of novel amides of polyunsaturated fatty acids with dopamine. Bioorg Med Chem Lett 11:447–449. https://doi.org/10.1016/s0960-894x(00)00689-2

    Article  CAS  PubMed  Google Scholar 

  32. Ernst J, Klinger-Strobel M, Arnold K et al (2018) Polyester-based particles to overcome the obstacles of mucus and biofilms in the lung for tobramycin application under static and dynamic fluidic conditions. Eur J Pharm Biopharm 131:120–129. https://doi.org/10.1016/j.ejpb.2018.07.025

    Article  CAS  PubMed  Google Scholar 

  33. Lane DD, Fessler AK, Goo S et al (2017) Sustained tobramycin release from polyphosphate double network hydrogels. Acta Biomater 50:484–492. https://doi.org/10.1016/j.actbio.2016.12.030

    Article  CAS  PubMed  Google Scholar 

  34. Kono H, Oshima K, Hashimoto H et al (2016) NMR characterization of sodium carboxymethyl cellulose: substituent distribution and mole fraction of monomers in the polymer chains. Carbohyd Polym 146:1–9. https://doi.org/10.1016/j.carbpol.2016.03.021

    Article  CAS  Google Scholar 

  35. Kono H, Oshima K, Hashimoto H et al (2016) NMR characterization of sodium carboxymethyl cellulose 2: chemical shift assignment and conformation analysis of substituent groups. Carbohyd Polym 150:241–249. https://doi.org/10.1016/j.carbpol.2016.05.003

    Article  CAS  Google Scholar 

  36. Follain N, Montanari S, Jeacomine I, Gambarelli S, Vignon MR (2008) Coupling of amines with polyglucuronic acid: evidence for amide bond formation. Carbohyd Polym 74:333–343. https://doi.org/10.1016/j.carbpol.2008.02.016

    Article  CAS  Google Scholar 

  37. Toffey A, Samaranayake G, Frazier CE, Glasser WG (1996) Chitin derivatives. I. Kinetics of the heat-induced conversion of chitosan to chitin. J Appl Polym Sci 60:75–85. https://doi.org/10.1002/(SICI)1097-4628(19960404)60:1<75::AID-APP9>3.0.CO;2-S

    Article  CAS  Google Scholar 

  38. Zieba A, Maslankiewicz A, Sitkowski J (2004) Spectral assignments and reference data - H-1, C-13 and N-15 NMR spectra of ciprofloxacin. Magn Reson Chem 42:903–904. https://doi.org/10.1002/mrc.1468

    Article  CAS  PubMed  Google Scholar 

  39. Kang X, Cai W, Zhang S et al (2017) Revealing the formation mechanism of insoluble polydopamine by using a simplified model system. Polym Chem 8:860–864. https://doi.org/10.1039/C6PY02005D

    Article  CAS  Google Scholar 

  40. Cheon JY, Park WH (2016) Effect of solution pH on the self-polymerization behavior of 3,4-Dihydroxyphenylalanine. Macromol Res 10:940–942. https://doi.org/10.1007/s13233-016-4133-2

    Article  CAS  Google Scholar 

  41. Chen CT, Martin-Martinez FJ, Jung GS et al (2017) Polydopamine and eumelanin molecular structures investigated with ab initio calculations. Chem Sci 8:1631–1641. https://doi.org/10.1039/c6sc04692d

    Article  CAS  PubMed  Google Scholar 

  42. Chen Z, Wang T, Yan X (2017) Synthesis of an elastic beta-cyclodextrin hydrogel cage by hydroxyethyl cellulose. J Appl Polym Sci 2:44388. https://doi.org/10.1002/app.44388

    Article  CAS  Google Scholar 

  43. Chen Z, Wang T, Yan Q (2018) Building a polysaccharide hydrogel capsule delivery system for control release of ibuprofen. J Biomat Sci Polym E 29:309–324. https://doi.org/10.1080/09205063.2017.1415583

    Article  CAS  Google Scholar 

  44. Herlinger E, Jameson RF, Linert W (1995) Spontaneous autoxidation of dopamine. J Chem SocPerkin Trans 2:259–263. https://doi.org/10.1039/P29950000259

    Article  Google Scholar 

  45. Xuan Y, Jiang GC, Li YY et al (2013) Inhibiting effect of dopamine adsorption and polymerization on hydrated swelling of montmorillonite. Colloid Surface A 422:50–60. https://doi.org/10.1016/j.colsurfa.2013.01.038

    Article  CAS  Google Scholar 

  46. Cox RA (2005) A comparison of the mechanisms of hydrolysis of benzimidates, esters, and amides in sulfuric acid media. Can J Chem 83:1391–1399. https://doi.org/10.1139/v05-142

    Article  CAS  Google Scholar 

  47. Kono H, Zakimi M (2013) Preparation, water absorbency, and enzyme degradability of novel chitin- and cellulose/chitin-based superabsorbent hydrogels. J Appl Polym Sci 128:572–581. https://doi.org/10.1002/app.38217

    Article  CAS  Google Scholar 

  48. Elliott JE, Macdonald M, Nie J et al (2004) Structure and swelling of poly (acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 45:1503–1510. https://doi.org/10.1016/j.polymer.2003.12.040

    Article  CAS  Google Scholar 

  49. Guo B, Yuan J, Yao L et al (2007) Preparation and release profiles of pH/temperature-responsive carboxymethyl chitosan/P(2-(dimethylamino) ethyl methacrylate) semi-IPN amphoteric hydrogel. Colloid Polym Sci 285:665–671. https://doi.org/10.1007/s00396-006-1611-7

    Article  CAS  Google Scholar 

  50. Doi M, Matsumoto M, Hirose Y (1992) Deformation of ionic polymer gels by electric fields. Macromolecules 25:5504–5511. https://doi.org/10.1021/ma00046a058

    Article  CAS  Google Scholar 

  51. Dreyer DR, Miller DJ, Freeman BD et al (2012) Elucidating the structure of poly(dopamine). Langmuir 28:6428–6435. https://doi.org/10.1021/la204831b

    Article  CAS  PubMed  Google Scholar 

  52. Wang Q, Li S, Wang Z et al (2009) Preparation and characterization of a positive thermoresponsive hydrogel for drug loading and release. J Appl Polym Sci 111:1417–1425. https://doi.org/10.1002/app.29026

    Article  CAS  Google Scholar 

  53. Ma Z, Jia X, Hu J et al (2013) Mussel-inspired thermosensitive polydopamine-graft-poly(N-isopropylacrylamide) coating for controlled-release fertilizer. J Agr Food Chem 61:12232–12237. https://doi.org/10.1021/jf4038826

    Article  CAS  Google Scholar 

  54. Ma Z, Jia X, Zhang GX et al (2013) pH-responsive controlled-release fertilizer with water retention via atom transfer radical polymerization of acrylic acid on mussel-inspired initiator. J Agr Food Chem 61:5474–5482. https://doi.org/10.1021/jf401102a

    Article  CAS  Google Scholar 

  55. Wang C, Yan Q, Liu HB et al (2011) Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions. Langmuir 27:12058–12068. https://doi.org/10.1021/la202267p

    Article  CAS  PubMed  Google Scholar 

  56. Surber C, Abels C, Maibach H (eds) (2018) pH of the skin: issues and challenges. Curr Probl Dermatol. Basel, Karger, vol 54, pp 19–25. https://doi.org/10.1159/000489514

  57. Mercier RC, Stumpo C, Rybak MJ (2002) Effect of growth phase and pH on the in vitro activity of a new glycopeptide, oritavancin (LY333328), against Staphylococcus aureus and Enterococcus faecium. J Antimicrob Chemoth 50:19–24. https://doi.org/10.1093/jac/dkf058

    Article  CAS  Google Scholar 

  58. Sjollema J, Zaat SAJ, Fontaine V et al (2018) In vitro methods for the evaluation of antimicrobial surface designs. Acta Biomaterialia 70:12–24. https://doi.org/10.1016/j.actbio.2018.02.001

    Article  CAS  PubMed  Google Scholar 

  59. Agnihotri S, Mukherji S, Mukherji S (2012) Antimicrobial chitosan-PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl Nanosci 2:179–188. https://doi.org/10.1007/s13204-012-0080-1

    Article  CAS  Google Scholar 

  60. Pathania D, Verma C, Negi P et al (2018) Novel nanohydrogel based on itaconic acid grafted tragacanth gum for controlled release of ampicillin. Carbohyd Polym 196:262–271. https://doi.org/10.1016/j.carbpol.2018.05.040

    Article  CAS  Google Scholar 

  61. Guan Y, Chen J, Qi X et al (2015) Fabrication of biopolymer hydrogel containing Ag nanoparticles for antibacterial property. Ind Eng Chem Res 54:7393–7400. https://doi.org/10.1021/acs.iecr.5b01532

    Article  CAS  Google Scholar 

  62. Tevyashova A, Sztaricskai F, Batta G et al (2004) Formation of squaric acid amides of anthracycline antibiotics. Synthesis and cytotoxic properties. Bioorg Med Chem Lett 14:4783–4789. https://doi.org/10.1016/j.bmcl.2004.06.072

    Article  CAS  PubMed  Google Scholar 

  63. Chen MH, Lu DW, Zhang X et al (2017) Synthesis of novel coumarin substituted amide derivatives and their antibacterial activities. Chem Pap 71:1579–1586. https://doi.org/10.1007/s11696-017-0149-0

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the Natural Science Foundation of Heilongjiang Province of China (E2018002), the National Natural Science Foundation of China (51403030), and the University-Student Innovative Experiment Project Fund Support for Northeast Forestry University (No. 201710225277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Q., Liu, L., Wang, T. et al. A pH-responsive hydrogel system based on cellulose and dopamine with controlled hydrophobic drug delivery ability and long-term bacteriostatic property. Colloid Polym Sci 297, 705–717 (2019). https://doi.org/10.1007/s00396-019-04501-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04501-w

Keywords

Navigation