Skip to main content

Advertisement

Log in

MPA-capped CdSe QD/mercaptoethylamine-capped AuNP nanocomposite-based sensor for instant detection of trinitrotoluene

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

CdSe quantum dots capped with mercaptopropionic acid (CdSe@MPA QDs) were synthesized by chemical route method. The developed CdSe@MPA QDs were pH optimized for higher emission. Gold nanoparticles in aqueous dispersion medium were synthesized by using sodium citrate as reduction agent and capped with mercaptoethylamine (MEA). Further, AuNP-MEA nanoparticles were conjugated with CdSe@MPAQDs. The “as-synthesized” nanomaterials and their composites were characterized by different analytical techniques like TEM, DLS, FTIR, UV-Vis, and PL spectroscopy. Upon excitation at λex = 400 nm, CdSe@MPA QDs show emission at 540 nm (λem) leading in a good spectral overlap with absorption spectra of AuNPs (λmax = 521 nm). Trinitrotoluene (TNT), being an electron deficient species can easily bind with electron-rich amine group. The amine functionalized GNPs (AuNP@MEA) were used as quenchers for FRET between QDs and GNPs to detect TNT. Using this assay, TNT has been selectively detected up to 21.9 nmol L−1 (LOD). Schematic diagram showing TNT detection based on FRET between gold nanoparticles and quantum dots is also suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mohammadzai IU, Ashiuchi T, Tsukahara S, Okamoto Y, Fujiwara T (2005) On-line liquid-liquid extraction coupled to a reversed micellar-mediated chemiluminescence detection system: application to the determination of amino/nitroaromatic compounds. J Chin Chem Soc 52(5):1037–1042. https://doi.org/10.1002/jccs.200500146

    Article  CAS  Google Scholar 

  2. Toxicological Profile for 2,4,6-trinitrotoluene (1995) US Department of Health and Human Services, Public Health Service. Agency for Toxic Substances and Disease Registry, Atlanta

  3. Van Dillewijn P, Couselo JL, Corredoira E, Delgado A, Wittich R-M, Ballester A, Ramos JL (2008) Bioremediation of 2,4,6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol 42(19):7405–7410. https://doi.org/10.1021/es801231w

    Article  Google Scholar 

  4. Lee YH, Liu H, Lee JY, Kim SH, Kim SK, Sessler JL, Kim Y, Kim JS (2010) Dipyrenylcalix [4] arene—a fluorescence-based chemosensor for trinitroaromatic explosives. Chem Eur J 16(20):5895–5901. https://doi.org/10.1002/chem.200903439

    Article  CAS  Google Scholar 

  5. Johnson BJ, Leska IA, Medina A, Dyson NF, Nasir M, Melde BJ, Taft JR, Charles PT (2012) Toward in-situ monitoring of water contamination by nitroenergetic compounds. Sensors 12(12):14953–14967. https://doi.org/10.3390/s121114953

    Article  CAS  Google Scholar 

  6. Marks P, Cohen S, Levine M (2013) Highly efficient quenching of nanoparticles for the detection of electron-deficient nitroaromatics. J Polym Sci A Polym Chem 51(19):4150–4155. https://doi.org/10.1002/pola.26824

    Article  CAS  Google Scholar 

  7. Caygill JS, Davis F, Higson SP (2012) Current trends in explosive detection techniques. Talanta 88:14–29. https://doi.org/10.1016/j.talanta.2011.11.043

    Article  CAS  Google Scholar 

  8. Song L, Bartmess JE (2009) Liquid chromatography/negative ion atmospheric pressure photoionization mass spectrometry: a highly sensitive method for the analysis of organic explosives. Rapid Commun Mass Spectrom 23(1):77–84. https://doi.org/10.1002/rcm.3857

    Article  CAS  Google Scholar 

  9. Zhang Y, Ma X, Zhang S, Yang C, Ouyang Z, Zhang X (2009) Direct detection of explosives on solid surfaces by low temperature plasma desorption mass spectrometry. Analyst 134(1):176–181. https://doi.org/10.1039/B816230A

    Article  CAS  Google Scholar 

  10. Moore DS, Scharff RJ (2009) Portable Raman explosives detection. Anal Bioanal Chem 393(6–7):1571–1578. https://doi.org/10.1007/s00216-008-2499-5

    Article  CAS  Google Scholar 

  11. Mäkinen M, NousiainenM SM (2011) Ion spectrometric detection technologies for ultra-traces of explosives: a review. Mass Spectrom Rev 30:940–973

    Google Scholar 

  12. Breijo EG, Pinatti CO, Peris RM, Fillol MA, Martínez-Máñez R, Camino JS (2013) TNT detection using a voltammetric electronic tongue based on neural networks. Sens Actuators A 192:1–8. https://doi.org/10.1016/j.sna.2012.11.038

    Article  CAS  Google Scholar 

  13. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100(7):2537–2574. https://doi.org/10.1021/cr9801014

    Article  CAS  Google Scholar 

  14. Meaney MS, McGuffin VL (2008) Luminescence-based methods for sensing and detection of explosives. Anal Bioanal Chem 391(7):2557–2576. https://doi.org/10.1007/s00216-008-2194-6

    Article  CAS  Google Scholar 

  15. Meaney MS, McGuffin VL (2008) Investigation of common fluorophores for the detection of nitrated explosives by fluorescence quenching. Anal Chim Acta 610(1):57–67. https://doi.org/10.1016/j.aca.2008.01.016

    Article  CAS  Google Scholar 

  16. Leahy-Hoppa MR, Fitch MJ, Osiander R (2009) Terahertz spectroscopy techniques for explosives detection. Anal Bioanal Chem 395(2):247–257. https://doi.org/10.1007/s00216-009-2803-z

    Article  CAS  Google Scholar 

  17. Pacheco-Londoño LC, Ortiz-Rivera W, Primera-Pedrozo OM, Hernández-Rivera SP (2009) Vibrational spectroscopy standoff detection of explosives. Anal Bioanal Chem 395(2):323–335. https://doi.org/10.1007/s00216-009-2954-y

    Article  Google Scholar 

  18. Fountain III AW, Christesen SD, Moon RP, Guicheteau JA, Emmons ED (2014) Recent advances and remaining challenges for the spectroscopic detection of explosive threats. Appl Spectrosc 68(8):795–811. https://doi.org/10.1366/14-07560

    Article  CAS  Google Scholar 

  19. Xu S, Lu H, Li J, Song X, Wang A, Chen L, Han S (2013) Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene. ACS Appl Mater Interfaces 5(16):8146–8154. https://doi.org/10.1021/am4022076

    Article  CAS  Google Scholar 

  20. Dasary SS, Singh AK, Senapati D, Yu H, Ray PC (2009) Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J Am Chem Soc 131(38):13806–13812. https://doi.org/10.1021/ja905134d

    Article  CAS  Google Scholar 

  21. Devi S, Singh B, Paul A, Tyagi S (2016) Highly sensitive and selective detection of trinitrotoluene using cysteine-capped gold nanoparticles. Anal Methods 8(22):4398–4405. https://doi.org/10.1039/C6AY01036A

    Article  CAS  Google Scholar 

  22. Lin D, Liu H, Qian K, Zhou X, Yang L, Liu J (2012) Ultrasensitive optical detection of trinitrotoluene by ethylenediamine-capped gold nanoparticles. Anal Chim Acta 744:92–98. https://doi.org/10.1016/j.aca.2012.07.029

    Article  CAS  Google Scholar 

  23. Feng L, Wang C, Ma Z, Lü C (2013) 8-Hydroxyquinoline functionalized ZnS nanoparticles capped with amine groups: a fluorescent nanosensor for the facile and sensitive detection of TNT through fluorescence resonance energy transfer. Dyes Pigments 97(1):84–91. https://doi.org/10.1016/j.dyepig.2012.11.023

    Article  CAS  Google Scholar 

  24. Carrillo-Carrión C, Simonet BM, Valcárcel M (2013) Determination of TNT explosive based on its selectively interaction with creatinine-capped CdSe/ZnS quantum dots. Anal Chim Acta 792:93–100. https://doi.org/10.1016/j.aca.2013.07.004

    Article  Google Scholar 

  25. Zhang K, Zhou H, Mei Q, Wang S, Guan G, Liu R, Zhang J, Zhang Z (2011) Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J Am Chem Soc 133(22):8424–8427. https://doi.org/10.1021/ja2015873

    Article  CAS  Google Scholar 

  26. Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nature Biotechnol 19(7):631–635. https://doi.org/10.1038/90228

    Article  CAS  Google Scholar 

  27. Mosaei Oskoei Y, Fattahi H, Hassanzadeh J, Mousavi Azar A (2016) Selective determination of trinitrotoluene based on energy transfer between carbon dots and gold nanoparticles. Anal Sci 32(2):193–199. https://doi.org/10.2116/analsci.32.193

    Article  Google Scholar 

  28. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. https://doi.org/10.1039/df9511100055

    Article  Google Scholar 

  29. Turkevich J (1985) Colloidal gold. Part II. Gold Bull 18(4):125–131. https://doi.org/10.1007/BF03214694

    Article  CAS  Google Scholar 

  30. Zhao J, Luo L, Yang X, Wang E, Dong S (1999) Determination of surface pKa of SAM using an electrochemical titration method. Electroanalysis 11(15):1108–1113. https://doi.org/10.1002/(SICI)1521-4109(199911)11:15<1108::AID-ELAN1108>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  31. Yu D, Wang Z, Liu Y, Jin L, Cheng Y, Zhou J, Cao S (2007) Quantum dot-based pH probe for quick study of enzyme reaction kinetics. Enzym Microb Technol 41(1-2):127–132. https://doi.org/10.1016/j.enzmictec.2006.12.012

    Article  CAS  Google Scholar 

  32. Maule C, Gonçalves H, Mendonça C, Sampaio P, da Silva JCE, Jorge P (2010) Wavelength encoded analytical imaging and fiber optic sensing with pH sensitive CdTe quantum dots. Talanta 80(5):1932–1938. https://doi.org/10.1016/j.talanta.2009.10.048

    Article  CAS  Google Scholar 

  33. Gao X, Chan WC, Nie S (2002) Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt 7(4):532–537. https://doi.org/10.1117/1.1506706

    Article  CAS  Google Scholar 

  34. Ruedas-Rama MJ, Orte A, Hall EA, Alvarez-Pez JM, Talavera EM (2011) Quantum dot photoluminescence lifetime-based pH nanosensor. Chem Comm 47(10):2898–2900. https://doi.org/10.1039/c0cc05252c

    Article  CAS  Google Scholar 

  35. Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108(1290):1067–1071. https://doi.org/10.1039/an9830801067

    Article  CAS  Google Scholar 

  36. Kubin RF, Fletcher AN (1982) Fluorescence quantum yields of some rhodamine dyes. J Lumin 27:455–462

    Article  Google Scholar 

  37. Daimon M, Masumura A (2007) Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl Opt 46(18):3811–3820. https://doi.org/10.1364/AO.46.003811

    Article  Google Scholar 

  38. Kalnaitytė A, Bagdonas S, Rotomskis R (2015) Effect of light on stability of thiol-capped CdSe/ZnS quantum dots in the presence of albumin. Lith J Phys 54

  39. Nowakowska J (1939) The refractive indices of ethyl alcohol and water mixtures. Loyola University, Chicago http://ecommons.luc.edu/luc_theses/668

    Google Scholar 

  40. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15(14):2854–2860. https://doi.org/10.1021/cm034081k

    Article  CAS  Google Scholar 

  41. HDai H, Shi Y, Wang Y, Sun Y, Hu J, Ni P et al (2014) A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer. Sens Actuator B-Chem 202:201–208

    Article  Google Scholar 

  42. Yang JS, Swager TM (1998) Porous shape persistent fluorescent polymer films: an approach to TNT sensory materials. J Am Chem Soc 120(21):5321–5322. https://doi.org/10.1021/ja9742996

    Article  CAS  Google Scholar 

  43. Danehy JP, Noel CJ (1960) The relative nucleophilic character of several mercaptans toward ethylene oxide1. J Am Chem Soc 82:2511–2515

  44. Zhang H, Zhou Z, Yang B, Gao M (2003) The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J Phys Chem B 107(1):8–13. https://doi.org/10.1021/jp025910c

    Article  CAS  Google Scholar 

  45. Sejwal P, Han Y, Shah A, Luk YY (2007) Water-driven chemoselective reactions of squarate derivatives with amino acids and peptides. Org Lett 9:4897–4900

  46. Maity M, Das S, Maiti NC (2014) Stability and binding interaction of bilirubin on a gold nano-surface: steady state fluorescence and FT-IR investigation. Phys Chem Chem Phys 16(37):20013–20022. https://doi.org/10.1039/C4CP02649G

    Article  CAS  Google Scholar 

  47. Hocaoglu I, Cizmeciyan MN, Erdem R, Ozen C, Kurt A, Sennaroglu A et al (2012) Development of highly luminescent and cytocompatible near-IR-emitting aqueous Ag2S quantum dots. J Mater Chem 22(29):14674–14681. https://doi.org/10.1039/c2jm31959d

    Article  CAS  Google Scholar 

  48. Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Meyers RA (ed) Encyclopedia of analytical chemistry. John Wiley & Sons Ltd., Chichester, pp 10815–10837

  49. Characteristic IR Absorption Frequencies of Organic Functional Groups. http://www2.ups.edu/faculty/hanson/Spectroscopy/IR/IRfrequencies.html. Accessed 15 March 2017

  50. Yuan P, Walt D (1987) Calculation for fluorescence modulation by absorbing species and its application to measurements using optical fibers. Anal Chem 59(19):2391–2394. https://doi.org/10.1021/ac00146a015

    Article  CAS  Google Scholar 

  51. Wang X, Guo X (2009) Ultrasensitive Pb2+ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Analyst 134(7):1348–1354. https://doi.org/10.1039/b822744f

    Article  CAS  Google Scholar 

  52. Feng J, Li Y, Yang M (2010) Conjugated polymer-grafted silica nanoparticles for the sensitive detection of TNT. Sens Actuator B-Chem 145(1):438–443. https://doi.org/10.1016/j.snb.2009.12.056

    Article  CAS  Google Scholar 

  53. Wang Y-q, W-s Z (2011) 3-Aminopropyltriethoxysilane-functionalized manganese doped ZnS quantum dots for room-temperature phosphorescence sensing ultratrace 2,4,6-trinitrotoluene in aqueous solution. Talanta 85(1):469–475. https://doi.org/10.1016/j.talanta.2011.04.014

    Article  CAS  Google Scholar 

  54. Xu S, Lu H (2015) Ratiometric fluorescence and mesoporous structure dual signal amplification for sensitive and selective detection of TNT based on MIP@ QD fluorescence sensors. Chem Comm 51(15):3200–3203. https://doi.org/10.1039/C4CC09766A

    Article  CAS  Google Scholar 

  55. Bhandari S, Roy S, Chattopadhyay A (2014) Enhanced photoluminescence and thermal stability of zinc quinolate following complexation on the surface of quantum dots. RSC Adv 4(46):24217–24221. https://doi.org/10.1039/c4ra03341h

    Article  CAS  Google Scholar 

  56. Fan L, Hu Y, Wang X, Zhang L, Li F, Han D, Li Z, Zhang Q, Wang Z, Niu L (2012) Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta 101:192–197. https://doi.org/10.1016/j.talanta.2012.08.048

    Article  CAS  Google Scholar 

  57. Feng L, Tong C, He Y, Liu B, Wang C, Sha J, Lü C (2014) A novel FRET-based fluorescent chemosensor of β-cyclodextrin derivative for TNT detection in aqueous solution. J Lumin 146:502–507. https://doi.org/10.1016/j.jlumin.2013.10.039

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge University Grant Commission, Government of India for the fellowship granted to the first author of this study. The authors are also thankful to the Director, Central Scientific Instrumentation Organization Chandigarh, India for providing the research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Tyagi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, S., Kaur, R., Paul, A.K. et al. MPA-capped CdSe QD/mercaptoethylamine-capped AuNP nanocomposite-based sensor for instant detection of trinitrotoluene. Colloid Polym Sci 296, 427–440 (2018). https://doi.org/10.1007/s00396-018-4261-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4261-7

Keywords

Navigation