Skip to main content
Log in

A novel stimulus-responsive temozolomide supramolecular vesicle based on host–guest recognition

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Temozolomide is a potent chemotherapeutic agent for glioblastoma multiforme treatment. However, its low aqueous solubility and short half-life (only about 1.8 h) in plasm limit its clinical therapeutics. Herein, a supramolecular vesicle based on hydroxypropyl-β-cyclodextrin and temozolomide was firstly constructed by elaborate design and preparation, which can load temozolomide into membranous layer of vesicle effectively. The morphologies and diameters of this temozolomide-loaded vesicle were characterized through transmission electron microscope, scanning electron microscope, and dynamic light scattering. The possible vesicle formation mechanism was further studied by X-ray diffraction, Fourier transform infrared spectrum, ultraviolet-visible spectroscopy, 1H nuclear magnetic resonance, and 2D nuclear magnetic resonance (ROSEY). Finally, the stimulus responsiveness of this vesicle was studied. Temozolomide can be released from the membrane of the vesicle once copper ions were dropped into the vesicle solution.

Herein, a novel supramolecular vesicle based on hydroxypropyl-β-cyclodextrin and temozolomide was constructed by elaborate design and preparation, which can load temozolomide into membranous layer of vesicle effectively. Moreover, hydroxypropyl-β-cyclodextrin/temozolomide vesicles exhibit sensitive stimulus responsiveness to copper ions since vesicles will change to irregular aggregates when copper ions are added into this vesicle system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9

Similar content being viewed by others

References

  1. Patil R, Portilla-Arias J, Ding H, Inoue S, Konda B, Hu JW, Wawrowsky K, Shin P, Black K, Holler E, Ljubimova J (2010) Temozolomide delivery to tumor cells by a multifunctional nano vehicle based on poly(β-L-malic acid). Pharm Res 27:2317–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Suppasansatorna P, Wang GC, Conwaya BR, Wang WD, Wang YF (2006) Skin delivery potency and antitumor activities of temozolomide ester prodrugs. Cancer Lett 244:42–52

    Article  CAS  Google Scholar 

  3. Zhang H, Gao S (2007) Temozolomide/PLGA microparticles and antitumor activity against glioma C6 cancer cells in vitro. Int J Pharm 329:122–128

    Article  CAS  PubMed  Google Scholar 

  4. Rosière R, Gelbcke M, Mathieu V, Antwerpen PV, Amighi K, Wauthoz N (2015) New dry powders for inhalation containing temozolomide-based nanomicelles for improved lung cancer therapy. Int J Oncol 47:1131–1142

    Article  CAS  PubMed  Google Scholar 

  5. Jain A, Chasoo G, Singh SK, Saxena AK, Jain SK (2011) Transferrin-appended PEGylated nanoparticles for temozolomide delivery to brain: in vitro characterisation. J Microencapsul 28:21–28

    Article  CAS  PubMed  Google Scholar 

  6. Huang GH, Zhang N, Bi XL, Dou MJ (2008) Solid lipid nanoparticles of temozolomide: potential reduction of cardial and nephric toxicity. Int J Pharm 355:314–320

    Article  CAS  PubMed  Google Scholar 

  7. Suppasansatorn P, Nimmannit U, Conway BR, Du LR, Wang YF (2007) Microemulsions as topical delivery vehicles for the anti-melanoma prodrug, temozolomide hexyl ester (TMZA-HE). J Pharm Pharmacol 59:787–794

    Article  CAS  PubMed  Google Scholar 

  8. Swaminathan S, Cavalli R, Trotta F (2016) Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. WIREs Nanomed Nanobiotechnol 8:579–601

    Article  CAS  Google Scholar 

  9. Appel E, Rowland MJ, Loh XJ, Heywood RM, Wattsbc C, Scherman OA (2012) Enhanced stability and activity of temozolomide in primary glioblastoma multiforme cells with cucurbit [n] uril. Chem Commun 48:9843–9845

    Article  CAS  Google Scholar 

  10. Nordling-David MM, Yaffe R, Guez D, Meirow H, Last D, Grad E, Salomon S, Sharabi S, Levi-Kalisman Y, Golomb G, Mardor Y (2017) Liposomal temozolomide drug delivery using convection enhanced delivery. J Control Release 261:138–146

    Article  CAS  PubMed  Google Scholar 

  11. Cao Y, Hu XY, Li Y, Zou XC, Xiong SH, Lin C, Shen YZ, Wang LY (2014) Multistimuli-responsive supramolecular vesicles based on watersoluble pillar[6] arene and SAINT complexation for controllable drug release. J Am Chem Soc 136:10762–10769

    Article  CAS  PubMed  Google Scholar 

  12. Wang YP, Ma N, Wang ZQ, Zhang X (2007) Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with a-Cyclodextrin. Angew Chem Int Ed 46:2823–2826

    Article  CAS  Google Scholar 

  13. Sun T, Wang QB, Bi YK, Chen XL, Liu LS, Ruan CH, Zhao ZF, Jiang C (2017) Supramolecular amphiphiles based on cyclodextrin and hydrophobic drugs. J Mater Chem B 5:2644–2654

    Article  CAS  Google Scholar 

  14. Xing PY, Sun T, Hao AY (2013) Vesicles from supramolecular amphiphiles. RSC Adv 3:24776–24793

    Article  CAS  Google Scholar 

  15. Spulber M, Najer A, Winkelbach K, Glaied O, Waser M, Pieles U, Meier W, Bruns N (2013) Photoreaction of a hydroxyalkyphenone with the membrane of Polymersomes: a versatile method to generate semipermeable nanoreactors. J Am Chem Soc 135:9204–9212

    Article  CAS  PubMed  Google Scholar 

  16. Gao XP, Lu F, Dong B, Zhou T, Tian WF, Zheng LQ (2014) Zwitterionic vesicles with AuCl4 counterions as soft templates for the synthesis of gold nanoplates and nanospheres. Chem Commun 50:8783–8786

    Article  CAS  Google Scholar 

  17. Stano P, Aguanno E, Bolz J, Fahr A, Luisi P (2013) A remarkable self-organization process as the origin of primitive functional cells. Angew Chem Int Ed 52:13397–13400

    Article  CAS  Google Scholar 

  18. Zhang HC, Ma X, Nguyen KT, Zhao YL (2013) Biocompatible pillararene-as sembly-based carriers for dual bioimaging. ACS Nano 7:7853–7863

    Article  CAS  PubMed  Google Scholar 

  19. Wang LG, Chierico L, Little D, Patikarnmonthon N, Yang Z, Azzouz M, Madsen J, Armes S, Battaglia G (2012) Encapsulation of biomacromolecules within polymersomes by electroporation. Angew Chem Int Ed 51:11122–11125

    Article  CAS  Google Scholar 

  20. Tao W, Liu Y, Jiang BB, Yu SR, Huang W, Zhou YF, Yan DY (2012) A linear-hyperbranched supramolecular amphiphile and its selfassembly into vesicles with great ductility. J Am Chem Soc 134:762–764

    Article  CAS  PubMed  Google Scholar 

  21. Wang MF, Mohebbi AR, Sun YM, Wudl F (2012) Ribbons, vesicles, and baskets: supramolecular assembly of a coil-plate-coil emeraldicene derivative. Angew Chem Int Ed 51:6920–6924

    Article  CAS  Google Scholar 

  22. Wang C, Guo YS, Wang YP, Xu HP, Wang RJ, Zhang X (2009) Supramolecular amphiphiles based on a water-soluble chargetransfer complex: fabrication of ultralong nanofibers with tunable straightness. Angew Chem Int Ed 48:8962–8965

    Article  CAS  Google Scholar 

  23. Wang C, Yin SC, Chen SL, Xu HP, Wang ZQ, Zhang X (2008) Controlled self-assembly manipulated by charge-transfer interactions: from tubes to vesicles. Angew Chem Int Ed 47:9049–9052

    Article  CAS  Google Scholar 

  24. Wang YP, Han P, Xu HP, Wang ZQ, Zhang X, Kabanov AV (2010) Photocontrolled self-assembly and disassembly of block ionomer complex vesicles: a facile approach toward supramolecular polymer nanocontainers. Langmuir 26:709–715

    Article  CAS  PubMed  Google Scholar 

  25. Li L, Rosenthal M, Zhang H, Hernandez JJ, Drechsler M, Phan KH, Rütten S, Zhu XM, Ivanov DA, Möller M (2012) Light-switchable vesicles from liquid-crystalline homopolymer-surfactant complexes. Angew Chem Int Ed 51:11616–11619

    Article  CAS  Google Scholar 

  26. Guo DS, Wang K, Wang YX, Liu Y (2012) Cholinesterase-responsive supramolecular vesicle. J Am Chem Soc 134:10244–10250

    Article  CAS  PubMed  Google Scholar 

  27. Yan Q, Yuan JY, Cai ZN, Xin Y, Kang Y, Yin YW (2010) Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J Am Chem Soc 132:9268–9270

    Article  CAS  PubMed  Google Scholar 

  28. Duan QP, Cao Y, Li Y, Hu XY, Xiao TX, Lin C, Pan Y, Wang LY (2013) pH-responsive supramolecular vesicles based on water-soluble pillar[6] arene and ferrocene derivative for drug delivery. J Am Chem Soc 135:10542–10549

    Article  CAS  PubMed  Google Scholar 

  29. Ma MF, Guan Y, Zhang C, Hao JC, Xing PY, Su J, Li SY, Chu XX, Hao AY (2014) Stimulus-responsive supramolecular vesicles with effective anticancer activity prepared by cyclodextrin and ftorafur. Colloids Surf A Physicochem Eng Asp 454:38–45

    Article  CAS  Google Scholar 

  30. Rui LL, Liu LC, Wang Y, Gao Y, Zhang WA (2016) Orthogonal approach to construct cell-like vesicles via pillar[5]arene-based amphiphilic supramolecular polymers. ACS Macro Lett 5:112–117

    Article  CAS  Google Scholar 

  31. Wang K, Guo DS, Wang X, Liu Y (2011) Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonatocalixarene and its controllable release of doxorubicin. ACS Nano 5:2880–2894

    Article  CAS  PubMed  Google Scholar 

  32. Sun T, Guo Q, Zhang C, Hao JC, Xing PY, Su J, Li SY, Hao AY, Liu GC (2012) Self-assembled vesicles prepared from amphiphilic cyclodextrins as drug carriers. Langmuir 28:8625–8636

    Article  CAS  PubMed  Google Scholar 

  33. Sun T, Yan H, Liu GC, Hao JC, Su J, Li SY, Xing PY, Hao AY (2012) Strategy of directly employing paclitaxel to construct vesicles. J Phys Chem B 116:14628–14636

    Article  CAS  PubMed  Google Scholar 

  34. Xing PY, Chu XX, Li SY, Hou YH, Ma MF, Yang JS, Hao AY (2013) Self-recovering β-cyclodextrin gel controlled by good/poor solvent environments. RSC Adv 3:22087–22094

    Article  CAS  Google Scholar 

  35. Liu WQ, Samanta SK, Smith BD, Isaacs L (2017) Synthetic mimics of biotin/(strept) avidin. Chem Soc Rev 46:2391–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou CC, Cheng XH, Zhao Q, Yan Y, Wang JD, Huang JB (2013) Self-assembly of channel type β-CD dimers induced by dodecane. Sci Rep 4:7533–7358

    Article  CAS  Google Scholar 

  37. Ma MF, Su J, Sheng X, Su F, Li SY, Xing PY, Hao AY (2014) Rapid regio- and enantioselectivities and kinetic resolution of DL-lysine by an effective supramolecular system in water. J Mol Liq 198:1–4

    Article  CAS  Google Scholar 

  38. Xu L, Zhang WY, Cai HB, Liu F, Wang Y, Gao Y, Zhang WA (2015) Photocontrollable release and enhancement of photodynamic therapy based on host-guest supramolecular amphiphiles. J Mater Chem B 3:7417–7426

    Article  CAS  Google Scholar 

  39. Shen QX, Liu LC, Zhang WA (2014) Fabrication of a photocontrolled surface with switchable wettability based on host-guest inclusion complexation and protein resistance. Langmuir 30:9361–9369

    Article  CAS  PubMed  Google Scholar 

  40. Jun SW, Kim M, Kim J, Park HJ, Lee S, Woo J, Hwang S (2007) Preparation and characterization of simvastatin/hydroxypropyl-β-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm 66:413–421

    Article  CAS  PubMed  Google Scholar 

  41. Yu GC, Han CY, Zhang ZB, Chen JZ, Yan XZ, Zheng B, Liu SY, Huang FH (2012) Pillar[6]arene-based photoresponsive host-guest complexation. J Am Chem Soc 134:8711–8717

    Article  CAS  PubMed  Google Scholar 

  42. Yu GC, Zhou XY, Zhang ZB, Han CY, Mao ZW, Gao CY, Huang FH (2012) Pillar[6]arene/paraquat molecular recognition in water: high binding strength, pH-responsiveness, and application in controllable self-assembly, controlled release, and treatment of paraquat poisoning. J Am Chem Soc 134:19489–19497

    Article  CAS  PubMed  Google Scholar 

  43. Ma MF, Shang WQ, Xing PY, Li SY, Chu XX, Hao AY, Liu GC, Zhang YM (2015) A supramolecular vesicle of camptothecin for its water dispersion and controllable release. Carbohydr Res 402:208–214

    Article  CAS  PubMed  Google Scholar 

  44. Yang B, Lin J, Chen Y, Liu Y (2009) Artemether/hydroxypropyl-β-cyclodextrin host-guest system: characterization, phase-solubility and inclusion mode. Bioorg Med Chem 17:6311–6317

    Article  CAS  PubMed  Google Scholar 

  45. Li G, McGown L (1994) Molecular nanotube aggregates of β-and γ-cyclodextrins linked by diphenylhexatrienes. Science 264:249–251

    Article  CAS  PubMed  Google Scholar 

  46. Hou XS, Ke CF, Cheng CY, Song N, Blackburn A, Sarjeant A, Botros Y, Yang YW, Stoddart JF (2014) Efficient syntheses of pillar[6]arene-based hetero[4] rotaxanes using a cooperative capture strategy. Chem Commun 50:6196–6199

    Article  CAS  Google Scholar 

  47. Sun T, Ma MF, Yan H, Shen J, Su J, Hao AY (2013) Vesicular particles directly assembled from the cyclodextrin/UR-144 supramolecular amphiphiles. Colloids Surf A Physicochem Eng Asp 424:105–112

    Article  CAS  Google Scholar 

  48. An W, Zhang HC, Sun LZ, Hao AY, Hao JC, Xin FF (2010) Reversible vesicles based on one and two head supramolecular cyclodextrin amphiphile induced by methanol. Carbohydr Res 345:914–921

    Article  CAS  PubMed  Google Scholar 

  49. Sun HY, Bai Y, Zhao MG, Hao AY, Xu GY, Shen J, Li JY, Sun T, Zhang HC (2009) New cyclodextrin derivative 6-O-(2-hydroxybutyl)-β-cyclodextrin: preparation and its application in molecular binding and recognition. Carbohydr Res 344:1999–2004

    Article  CAS  PubMed  Google Scholar 

  50. Wang J, Luo C, Shan CL, You QC, Lu JY, Elf S, Zhou Y, Wen Y, Vinkenborg JL, Fan J, Kang H, Lin RT, Han DL, Xie YX, Karpus J, Chen SJ, Ouyang S, Luan CH, Zhang NX, Ding H, Merkx M, Liu H, Chen J, Jiang HL, He C (2015) Inhibtion of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nat Chem 7:968–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang Y, Swaminathan S, Tang SC, Garcia-Amoros J, Boulina M, Captain B, Baker J, Raymo FM (2015) Photoactivatable BODIPYs designed to monitor the dynamics of supramolecular nanocarriers. J Am Chem Soc 137:4709–4719

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received financial support by the Support Funds for Teachers’ Scientific Research of Jining Medical University (NO. JYFC2018KJ045), PhD Start-up Scientific Research Foundation of Jining Medical University (NO. 2017JYQD03), National Natural Science Foundation of China (NO. 21872087), Shandong Science and Technology Development Plan (NO. 2016GGX107004), and Projects of Medical and Health Technology Development Program in Shandong Province (NO. 2017WS653).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingfang Ma or Aiyou Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 6673 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Kong, L., Du, Z. et al. A novel stimulus-responsive temozolomide supramolecular vesicle based on host–guest recognition. Colloid Polym Sci 297, 261–269 (2019). https://doi.org/10.1007/s00396-018-04461-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-04461-7

Keywords

Navigation