Skip to main content
Log in

Self-assembled chitosan-alginate polyplex nanoparticles containing temoporfin

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The aim of this study was to develop biocompatible polyplex nanoparticles with physicochemical properties suitable for the delivery of photosensitizer temoporfin. We prepared, characterized, and compared the two types of polyplex nanoformulations consisting of sodium alginate in combination with chitosan polymer or chitosan oligomer lactate. We obtained the polyplex system by multiple electrostatic interactions between cationic chitosan and anionic alginate and identified key process parameters. Particle size distribution, dispersity, and zeta potential were determined by dynamic light scattering (DLS), and the diameter and the morphology of the individual particles were visualized by a transmission electron microscopy (TEM). It was found that size distribution of the polyplex nanoparticles depends on the concentrations of chitosan and alginate stock solutions and the order and ratio of addition of stock solutions as well as on the pH of the resulting mixture. It appears that the nanoparticles are homogeneous, although micrographs indicate some (vague, indistinct) core-shell structure. The nanoparticles are stable at pH 7.4 (pH of blood plasma) and show only very little drug leak in experiment modeling conditions of blood pool transport to target tissues.

The formation mechanism of temoporfin-loaded polyplex nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Alg:

Sodium alginate

D H :

Hydrodynamic diameter (nm)

DL:

Drug loading (%)

DLS:

Dynamic light scattering

EE:

Entrapment efficiency (%)

Chit:

Chitosan polymer

ChitOL:

Chitosan oligomer lactate

NPs:

Nanoparticles

PDI:

Dispersity

PDT:

Photodynamic therapy

PNPs:

Polyplex nanoparticles

PS:

Photosensitizer

SD:

Standard deviation

TEM:

Transmission electron microscopy

T-PNPs:

Temoporfin-loaded polyplex nanoparticles

UV-VIS:

Ultraviolet-visible spectroscopy

ZP:

Zeta potential (mV)

References

  1. Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115:1990–2042. doi:10.1021/cr5004198

    Article  CAS  PubMed  Google Scholar 

  2. Abrahamse H, Hamblin MR (2016) New photosensitizers for photodynamic therapy. Biochem J 4:347–364. doi:10.1042/BJ20150942

    Article  CAS  Google Scholar 

  3. Senge MO (2012) MTHPC—a drug on its way from second to third generation photosensitizer? Photodiagn Photodyn Ther 9:170–179. doi:10.1016/j.pdpdt.2011.10.001

    Article  CAS  Google Scholar 

  4. Senge MO, Brandt JC (2011) Temoporfin (Foscan®, 5,10,15,20-tetra(m-hydroxyphenyl)chlorin)—a second-generation photosensitizer. Photochem Photobiol 87:1240–1296. doi:10.1111/j.1751-1097.2011.00986.x

    Article  CAS  PubMed  Google Scholar 

  5. Agostinis P, Berg K, Cengel KA, et al. (2011) Photodynamic therapy of cancer: an update. Am Cancer Soc 61:250–281. doi:10.3322/caac.20114.Available

    Article  Google Scholar 

  6. Sasnouski S, Zorin V, Khludeyev I, et al. (2005) Investigation of Foscan® interactions with plasma proteins. Biochim Biophys Acta-Gen Subj 1725:394–402. doi:10.1016/j.bbagen.2005.06.014

    Article  CAS  Google Scholar 

  7. François A, Marchal S, Guillemin F, Bezdetnaya L (2011) mTHPC-based photodynamic therapy induction of autophagy and apoptosis in cultured cells in relation to mitochondria and endoplasmic reticulum stress. Int J Oncol 39:1537–1543. doi:10.3892/ijo.2011.1174

    Article  CAS  PubMed  Google Scholar 

  8. Bonnett R, Djelal BD, Nguyen A (2001) Physical and chemical studies related to the development of m-THPC (FOSCAN (R)) for the photodynamic therapy (PDT) of tumours. J Porphyrins Phthalocyanines 5:652–661

    Article  CAS  Google Scholar 

  9. Feng C, Song R, Sun G, et al. (2014) Immobilization of coacervate microcapsules in multilayer sodium alginate beads for efficient oral anticancer drug delivery. Biomacromolecules 15:985–996. doi:10.1021/bm401890x

    Article  CAS  PubMed  Google Scholar 

  10. Hofman JW, Carstens MG, van Zeeland F, et al. (2008) Photocytotoxicity of mTHPC (temoporfin) loaded polymeric micelles mediated by lipase catalyzed degradation. Pharm Res 25:2065–2073. doi:10.1007/s11095-008-9590-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li L, Huh KM (2014) Polymeric nanocarrier systems for photodynamic therapy. Biomater Res 18:19. doi:10.1186/2055-7124-18-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Derycke ASL, De Witte PAM (2004) Liposomes for photodynamic therapy. Adv Drug Deliv Rev 56:17–30. doi:10.1016/j.addr.2003.07.014

    Article  CAS  PubMed  Google Scholar 

  13. Reshetov V, Lassalle H-P, François A, et al. (2013) Photodynamic therapy with conventional and PEGylated liposomal formulations of mTHPC (temoporfin): comparison of treatment efficacy and distribution characteristics in vivo. Int J Nanomedicine 8:3817–3831. doi:10.2147/IJN.S51002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dragicevic-Curic N, Fahr A (2012) Liposomes in topical photodynamic therapy. Expert Opin Drug Deliv 9:1015–1032. doi:10.1517/17425247.2012.697894

    Article  CAS  PubMed  Google Scholar 

  15. Taillefer J, Brasseur N, van Lier JE, et al. (2001) In-vitro and in-vivo evaluation of pH-responsive polymeric micelles in a photodynamic cancer therapy model. J Pharm Pharmacol 53:155–166. doi:10.1211/0022357011775352

    Article  CAS  PubMed  Google Scholar 

  16. Gibot L, Lemelle A, Till U, et al. (2014) Polymeric micelles encapsulating photosensitizer: structure/photodynamic therapy efficiency relation. Biomacromolecules 15:1443–1455. doi:10.1021/bm5000407

    Article  CAS  PubMed  Google Scholar 

  17. Van Nostrum CF (2004) Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv Drug Deliv Rev 56:9–16. doi:10.1016/j.addr.2003.07.013

    Article  CAS  PubMed  Google Scholar 

  18. Koo H, Lee H, Lee S, et al. (2010) In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles. Chem Commun (Camb) 46:5668–5670. doi:10.1039/c0cc01413c

    Article  CAS  Google Scholar 

  19. Rojnik M, Kocbek P, Moret F, et al. (2012) In vitro and in vivo characterization of temoporfin-loaded PEGylated PLGA nanoparticles for use in photodynamic therapy. Nanomedicine 7:663–677. doi:10.2217/nnm.11.130

    Article  CAS  PubMed  Google Scholar 

  20. Fadel M, Kassab K, Abdel Fadeel D (2010) Zinc phthalocyanine-loaded PLGA biodegradable nanoparticles for photodynamic therapy in tumor-bearing mice. Lasers Med Sci 25:283–292. doi:10.1007/s10103-009-0740-x

    Article  PubMed  Google Scholar 

  21. Zeisser-Labouèbe M, Lange N, Gurny R, Delie F (2006) Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer. Int J Pharm 326:174–181. doi:10.1016/j.ijpharm.2006.07.012

    Article  CAS  PubMed  Google Scholar 

  22. Debele TA, Peng S, Tsai HC (2015) Drug carrier for photodynamic cancer therapy. Int J Mol Sci. doi:10.3390/ijms160922094

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li P, Dai Y, Zhang J, et al. (2008) Chitosan-alginate nanoparticles as a novel drug delivery system for nifedipine. Int J Biomed Sci 4:221–228

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Haug A, Larsen B, Smidsrød O (1966) A study of the constitution of alginic acid by partial acid hydrolysis. Acta Chem Scand 20:183–190. doi:10.3891/acta.chem.scand.20-0183

    Article  CAS  Google Scholar 

  25. Holme HK, Foros H, Pettersen H, et al. (2001) Thermal depolymerization of chitosan chloride. Carbohydr Polym 46:287–294. doi:10.1016/S0144-8617(00)00332-5

    Article  CAS  Google Scholar 

  26. Guarino V, Caputo T, Altobelli R, Ambrosio L (2015) Degradation properties and metabolic activity of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications. AIMS Mater Sci 2:497–502. doi:10.3934/matersci.2015.4.497

    Article  Google Scholar 

  27. Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Release 89:151–165. doi:10.1016/S0168-3659(03)00126-3

    Article  CAS  PubMed  Google Scholar 

  28. Shieh M-J, Peng C-L, Chiang W-L, et al. (2010) Reduced skin photosensitivity with meta-tetra(hydroxyphenyl)chlorin-loaded micelles based on a poly(2-ethyl-2-oxazoline)-b-poly(d,l-lactide) diblock copolymer in vivo. Mol Pharm 7:1244–1253. doi:10.1021/mp100060v

    Article  CAS  PubMed  Google Scholar 

  29. Banfi S, Caruso E, Buccafurni L, et al. (2006) Synthesis, photodynamic activity, and quantitative structure-activity relationship modeling. J Med Chem 49:3293–3304

    Article  CAS  Google Scholar 

  30. Yu Q, Rodriguez EM, Naccache R, et al. (2014) Chemical modification of temoporfin—a second generation photosensitizer activated using upconverting nanoparticles for singlet oxygen generation. Chem Commun (Camb) 50:12150–12153. doi:10.1039/c4cc05867d

    Article  CAS  Google Scholar 

  31. Anastassiades M, Lehotay SJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOCA Int 86:412–431

  32. Trousil J, Panek J, Hruby M, et al. (2014) Self-association of bee propolis: effects on pharmaceutical applications. J Pharm Investig 44:15–22. doi:10.1007/s40005-013-0104-1

    Article  CAS  Google Scholar 

  33. Abdelghany SM, Schmid D, Deacon J, et al. (2013) Enhanced antitumor activity of the photosensitizer meso-tetra(N-methyl-4-pyridyl) porphine tetra tosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticles. Biomacromolecules 14:302–310. doi:10.1021/bm301858a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jawahar N, Meyyanathan S (2012) Polymeric nanoparticles for drug delivery and targeting: a comprehensive review. Int J Heal Allied Sci 1:217. doi:10.4103/2278-344X.107832

    Article  Google Scholar 

  35. Rivera MC, Pinheiro AC, Bourbon AI, et al. (2015) Hollow chitosan/alginate nanocapsules for bioactive compound delivery. Int J Biol Macromol 79:95–102. doi:10.1016/j.ijbiomac.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  36. Tan ML, Choong PFM, Dass CR (2009) Cancer, chitosan nanoparticles and catalytic nucleic acids. J Pharm Pharmacol 61:3–12. doi:10.1211/jpp/61.01.0002

    Article  CAS  PubMed  Google Scholar 

  37. Duan J, Wang J, Guo T, Gregory J (2014) Zeta potentials and sizes of aluminum salt precipitates—effect of anions and organics and implications for coagulation mechanisms. J Water Process Eng 4:224–232. doi:10.1016/j.jwpe.2014.10.008

    Article  Google Scholar 

  38. Ito T, Sun L, Bevan MA, Crooks RM (2004) Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering. Langmuir 20:6940–6945. doi:10.1021/la049524t

    Article  CAS  PubMed  Google Scholar 

  39. Douglas KL, Tabrizian M (2005) Effect of experimental parameters on the formation of alginate-chitosan nanoparticles and evaluation of their potential application as DNA carrier. J Biomater Sci Polym Ed 16:43–56. doi:10.1163/1568562052843339

    Article  CAS  PubMed  Google Scholar 

  40. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223. doi:10.1016/j.yexmp.2008.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Joye IJ, McClements DJ (2014) Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Curr Opin Colloid Interface Sci 19:417–427. doi:10.1016/j.cocis.2014.07.002

    Article  CAS  Google Scholar 

  42. Bender KI, Lutsevich AN (1988) Dependence of the absorption through the human oral mucosa of antihistaminic (H1) preparations on their physicochemical properties. Farmakol Toksikol 51:75–79

    CAS  PubMed  Google Scholar 

  43. Vasiluk L (2006) Development of an in vitro system to access the oral bioavailability of hydrophobic contaminants. Simon Fraser University, Burnaby, Canada

    Google Scholar 

  44. Waring MJ (2009) Defining optimum lipophilicity and molecular weight ranges for drug candidates-molecular weight dependent lower log D limits based on permeability. Bioorganic Med Chem Lett 19:2844–2851. doi:10.1016/j.bmcl.2009.03.109

    Article  CAS  Google Scholar 

  45. Zambito Y, Pedreschi E, Di Colo G (2012) Is dialysis a reliable method for studying drug release from nanoparticulate systems? A case study. Int J Pharm 434:28–34. doi:10.1016/j.ijpharm.2012.05.020

    Article  CAS  PubMed  Google Scholar 

  46. Moreno-Bautista G, Tam KC (2011) Evaluation of dialysis membrane process for quantifying the in vitro drug-release from colloidal drug carriers. Colloids Surfaces A Physicochem Eng Asp 389:299–303. doi:10.1016/j.colsurfa.2011.07.032

    Article  CAS  Google Scholar 

  47. Modi S, Anderson BD (2013) Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol Pharm 10:3076–3089. doi:10.1021/mp400154a

    Article  CAS  PubMed  Google Scholar 

  48. Mehraban N, Freeman HS (2015) Developments in PDT sensitizers for increased selectivity and singlet oxygen production. Materials (Basel). doi:10.3390/ma8074421

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the LQ1604 National Sustainability Program II (Project BIOCEV-FAR) and by the project “BIOCEV” (CZ.1.05/1.1.00/02.0109). This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic grant no. LH14008 (Contact II). The author is grateful for the supports by the IGA University of Chemistry and Technology, Prague, no. A1_FCHI_2016_003. The authors from Institute of Macromolecular Chemistry AS CR acknowledge financial support from Czech Science Foundation (grant no. 16-02870S) and from Ministry of Health of the Czech Republic (grant no. 15-25781a). Electron microscopy at the Institute of Macromolecular Chemistry was supported by project POLYMAT LO1507 (Ministry of Education, Youth and Sports of the CR, program NPU I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hruby.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brezaniova, I., Trousil, J., Cernochova, Z. et al. Self-assembled chitosan-alginate polyplex nanoparticles containing temoporfin. Colloid Polym Sci 295, 1259–1270 (2017). https://doi.org/10.1007/s00396-016-3992-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3992-6

Keywords

Navigation