Skip to main content
Log in

Understanding the effects of nucleating agent concentration on the polymorphic behavior of β-nucleated isotactic polypropylene with different melt structures

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

To elucidate the synergetic effect in enhancing β-crystallization between β-nucleating agent (β-NA) and ordered structures of isotactic polypropylene (iPP), i.e., ordered structure effect (OSE), in this study, the role of β-NA concentration (Cβ-NA) was studied by differential scanning calorimetry (DSC) and in-situ small-angle X-ray scattering (in-situ SAXS). Results showed that Cβ-NA was a determining factor of OSE: Cβ-NA < 0.01 wt% was too low to induce β-crystallization while Cβ-NA ≥ 0.09 wt% was saturated β-NA concentration, and none of them can induce OSE; only when Cβ-NA = 0.01–0.08 wt% (i.e., unsaturated concentration) can OSE take place. There existed a competitive relationship in the enhancement of β-phase between OSE and conventional β-nucleation effect of β-NA. Moreover, in-situ SAXS revealed that at T f = 190 °C (around upper limiting temperature for occurrence of OSE), when Cβ-NA was different, the geometric shapes of ordered structures in iPP melts were quite different from each other. The involved mechanism was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Busico V, Cipullo R (2001) Microstructure of polypropylene. Prog Polym Sci 26:443–533

    Article  CAS  Google Scholar 

  2. Kang J, Cao Y, Li H, Li J, Chen S, Yang F, Xiang M (2012) Influence of the stereo-defect distribution on the crystallization behavior of Ziegler-Natta isotactic polypropylene. J Polym Res 19:37, 1–11

    Article  Google Scholar 

  3. Kang J, Li J, Chen S, Peng H, Wang B, Cao Y, Li H, Chen J, Gai J, Yang F, Xiang M (2013) Investigation of the crystallization behavior of isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J Appl Polym Sci 129:2663–2670

    Article  CAS  Google Scholar 

  4. Kang J, Chen J, Cao Y, Li H (2010) Effects of ultrasound on the conformation and crystallization behavior of isotactic polypropylene and β-isotactic polypropylene. Polymer 51:249–256

    Article  CAS  Google Scholar 

  5. Bai H, Wang Y, Zhang Z, Han L, Li Y, Liu L, Zhou Z, Men Y (2009) Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent. Macromolecules 42:6647–6655

    Article  CAS  Google Scholar 

  6. Kmetty A, Barany T, Karger-Kocsis J (2012) Injection moulded all-polypropylene composites composed of polypropylene fibre and polypropylene based thermoplastic elastomer. Compos Sci Technol 73:72–80

    Article  CAS  Google Scholar 

  7. Xu JZ, Liang YY, Huang HD, Zhong GJ, Lei J, Chen C, Li ZM (2012) Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. J Polym Res 19:10, 1–7

    Article  Google Scholar 

  8. Kang J, Li J, Chen S, Zhu S, Li H, Cao Y, Yang F, Xiang M (2013) Hydrogenated petroleum resin effect on the crystallization of isotactic polypropylene. J Appl Polym Sci 130:25–38

    Article  CAS  Google Scholar 

  9. Karger-Kocsis J, Wanjale SD, Abraham T, Bárány T, Apostolov AA (2010) Preparation and characterization of polypropylene homocomposites: exploiting polymorphism of PP homopolymer. J Appl Polym Sci 115:684–691

    Article  CAS  Google Scholar 

  10. Natta G, Pino P, Corradini P, Danusso F, Mantica E, Mazzanti G, Moraglio G (1955) Crystalline high polymers of α-olefins. J Am Chem Soc 77:1708–1710

    Article  CAS  Google Scholar 

  11. Lotz B (2000) What can polymer crystal structure tell about polymer crystallization processes? Isotactic polypropylene, β-phase: a study in frustration. Eur Phys J E 3:185–194

    Article  CAS  Google Scholar 

  12. Dorset DL, McCourt MP, Kopp S, Schumacher M, Okihara T, Lotz B (1998) Isotactic polypropylene, β-phase: a study in frustration. Polymer 39:6331–6337

    Article  CAS  Google Scholar 

  13. Ferro DR, Meille SV, Bruckner S (1998) Energy calculations for isotactic polypropylene: a contribution to clarify the β crystalline structure. Macromolecules 31:6926–6934

    Article  CAS  Google Scholar 

  14. Bruckner S, Phillips PJ, Mezghani K, Meille SV (1997) On the crystallization of γ-isotactic polypropylene: a high pressure study. Macromol Rapid Commun 18:1–7

    Article  Google Scholar 

  15. Varga J (2002) β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Part B 41:1121–1171

    Article  Google Scholar 

  16. Henning S, Adhikari R, Michler GH, Balta Calleja FJ, Karger-Kocsis J (2004) Micromechanical mechanisms for toughness enhancement in β-modified polypropylene. Macromol Symp 214:157–172

    Article  CAS  Google Scholar 

  17. Grein C (2005) Toughness of neat, rubber modified and filled β-nucleated polypropylene: from fundamentals to applications. Adv Polym Sci 188:43–104

    Article  CAS  Google Scholar 

  18. Pawlak A, Piorkowska E (2001) Crystallization of isotactic polypropylene in a temperature gradient. Colloid Polym Sci 279:939–946

    Article  CAS  Google Scholar 

  19. Liu Q, Sun X, Li H, Yan S (2013) Orientation-induced crystallization of isotactic polypropylene. Polymer 54:4404–4421

    Article  CAS  Google Scholar 

  20. Karger-Kocsis J, Varga J (1996) Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci B Polym Phys 34:657–670

    Article  Google Scholar 

  21. Wittmann JC, Lotz B (1990) Epitaxial crystallization of polymers on organic and polymeric substrates. Prog Polym Sci 15:909–948

    Article  CAS  Google Scholar 

  22. Varga J, Mudra I, Ehrenstein GW (1999) Highly active thermally stable β-nucleating agents for isotactic polypropylene. J Appl Polym Sci 74:2357–2368

    Article  CAS  Google Scholar 

  23. Chen Z, Wang B, Kang J, Peng H, Chen J, Yang F, Cao Y, Li H, Xiang M (2014) Crystallization behavior and morphology of β-nucleated isotactic polypropylene with different stereo-defect distribution. Polym Adv Technol 24:353–363

    Article  Google Scholar 

  24. Kang J, Gai J, Li J, Chen S, Peng H, Wang B, Cao Y, Li H, Chen J, Yang F, Xiang M (2013) Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J Polym Res 20:70, 1–11

    Article  Google Scholar 

  25. Lorenzo AT, Arnal ML, Sánchez JJ, Muller AJ (2006) Effect of annealing time on the self-nucleation behavior of semicrystalline polymers. J Polym Sci B Polym Phys 44:1738–1750

    Article  CAS  Google Scholar 

  26. Cavallo D, Gardella L, Portale G, Muller AJ, Alfonso GC (2014) Self-nucleation of isotactic poly(1-butene) in the trigonal modification. Polymer 55:137–142

    Article  CAS  Google Scholar 

  27. Muller AJ, Arnal ML (2005) Thermal fractionation of polymers. Prog Polym Sci 30:559–603

    Article  Google Scholar 

  28. Fillon B, Wittmann J, Lotz B, Thierry A (1993) Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J Polym Sci B Polym Phys 31:1383–1393

    Article  CAS  Google Scholar 

  29. Su F, Li X, Zhou W, Zhu S, Ji Y, Wang Z, Qi Z, Li L (2013) Direct formation of isotactic poly(1-butene) form I crystal from memorized ordered melt. Macromolecules 46:7399–7405

    Article  CAS  Google Scholar 

  30. Li X, Su F, Ji Y, Tian N, Lu J, Wang Z, Qi Z, Li L (2013) Influence of the memory effect of a mesomorphic isotactic polypropylene melt on crystallization behavior. Soft Mat 9:8579–8588

    Article  CAS  Google Scholar 

  31. Cong Y, Hong Z, Zhou W, Chen W, Su F, Li H, Li X, Yang K, Yu X, Qi Z, Li L (2012) Conformational ordering on the growth front of isotactic polypropylene spherulite. Macromolecules 45:8674–8680

    Article  CAS  Google Scholar 

  32. Gee RH, Lacevic N, Fried LE (2006) Atomistic simulations of spinodal phase separation preceding polymer crystallization. Nat Mater 5:39–43

    Article  CAS  Google Scholar 

  33. Sanz A, Nogales A, Puente-Orench I, Jiménez-Ruiz M, Ezquerra TA (2011) Detection of early stage precursor during formation of plastic crystal ethanol from the supercooled liquid state: a simultaneous dielectric spectroscopy with neutron diffraction study. Phys Rev Lett 107:025502

    Article  Google Scholar 

  34. Soccio M, Nogales A, Lotti N, Munari A, Ezquerra T (2007) Evidence of early stage precursors of polymer crystals by dielectric spectroscopy. Phys Rev Lett 98:037801

    Article  CAS  Google Scholar 

  35. Zhang B, Chen J, Ji F, Zhang X, Zheng G, Shen C (2012) Effects of melt structure on shear-induced β-cylindrites of isotactic polypropylene. Polymer 53:1791–1800

    Article  CAS  Google Scholar 

  36. Zhang B, Chen J, Cui J, Zhang H, Ji F, Zheng G, Heck B, Reiter G, Shen C (2012) Effect of shear stress on crystallization of isotactic polypropylene from a structured melt. Macromolecules 45:8933–8937

    Article  CAS  Google Scholar 

  37. Kang J, Weng G, Chen Z, Chen J, Cao Y, Yang F, Xiang M (2014) New understanding in the influence of melt structure and β-nucleating agents on the polymorphic behavior of isotactic polypropylene. RSC Adv 4:29514–29526

    Article  CAS  Google Scholar 

  38. Kang J, Chen Z, Zhou T, Yang F, Chen J, Cao Y, Xiang M (2014) Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res 21:384, 1–12

    Article  Google Scholar 

  39. Kang J, Zhang J, Chen Z, Yang F, Chen J, Cao Y, Xiang M (2014) Isothermal crystallization behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res 21:506, 1–9

    Article  Google Scholar 

  40. Yamamoto Y, Inoue Y, Onai T, Doshu C, Takahashi H, Uehara H (2007) Deconvolution analyses of differential scanning calorimetry profiles of β-crystallized polypropylenes with synchronized x-ray measurements. Macromolecules 40:2745–2750

    Article  CAS  Google Scholar 

  41. Turner-Jones A, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 75:136

    Google Scholar 

  42. Li JX, Cheung WL, Demin J (1999) A study on the heat of fusion of β-polypropylene. Polymer 40:1219–1222

    Article  CAS  Google Scholar 

  43. Kang J, Peng H, Wang B, Chen Z, Li J, Chen J, Cao Y, Li H, Yang F, Xiang M (2014) Comparative study on the crystallization behavior of β-isotactic polypropylene nucleated with different β-nucleation agents—effects of thermal conditions. J Appl Polym Sci 131:40115

    Article  Google Scholar 

  44. Kang J, Wang B, Peng H, Li J, Chen J, Gai J, Cao Y, Li H, Yang F, Xiang M (2014) Investigation on the dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different stereo-defect distribution—the role of dual-selective β-nucleation agent. Polym Adv Technol 25:97–107

    Article  CAS  Google Scholar 

  45. Peng H, Wang B, Gai J, Chen J, Yang F, Cao Y, Li H, Kang J, Xiang M (2014) Morphology and mechanical behavior of isotactic polypropylene with different stereo-defect distribution in injection molding. Polym Adv Technol. doi:10.1002/pat.3388

    Google Scholar 

  46. Wu T, Xiang M, Cao Y, Kang J, Yang F (2014) Pore formation mechanism of β nucleated polypropylene stretched membranes. RSC Adv 4:36689–36701

    Article  CAS  Google Scholar 

  47. Pasquini N, Addeo A (2005) Polypropylene handbook, Hanser

  48. Zhang Q, Chen Z, Wang B, Chen J, Yang F, Kang J, Cao Y, Xiang M, Li H (2014) Effects of melt structure on crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents. J Appl Polym Sci. doi:10.1002/app.41355

    Google Scholar 

  49. Wang SW, Yang W, Bao RY, Wang B, Xie BH, Yang MB (2010) The enhanced nucleating ability of carbon nanotube-supported β-nucleating agent in isotactic polypropylene. Colloid Polym Sci 288:681–688

    Article  CAS  Google Scholar 

  50. Luo F, Wang K, Ning N, Geng C, Deng H, Chen F, Fu Q, Qian Y, Zheng D (2011) Dependence of mechanical properties on β-form content and crystalline morphology for β-nucleated isotactic polypropylene. Polym Adv Technol 22:2044–2054

    Article  CAS  Google Scholar 

  51. Reid BO, Vadlamudi M, Mamun A, Janani H, Gao H, Hu W, Alamo RG (2013) Strong memory effect of crystallization above the equilibrium melting point of random copolymers. Macromolecules 46:6485–6497

    Article  CAS  Google Scholar 

  52. Muller AJ, Lorenzo AT, Arnal ML, de Fierro AB, Abetz V (2006) Self-nucleation behavior of the polyethylene block as function of the confinement degree in polyethylene-block-polystyrene diblock copolymers. Macromol Symp 240:114–122

    Article  CAS  Google Scholar 

  53. Papageorgiou DG, Papageorgiou GZ, Zhuravlev E, Bikiaris D, Schick C, Chrissafis K (2013) Competitive crystallization of a propylene/ethylene random copolymer filled with a β-nucleating agent and multi-walled carbon nanotubes. Conventional and Ultrafast DSC Study. J Phys Chem B 117:14875–14884

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express sincerely our thanks to the Sichuan University Scientific Research Foundation for Young Teachers (2012SCU11075), National Natural Science Foundation of China (NSFC 51203106, 21404063), Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ14E030001), and K.C. Wong Magna Fund of Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Yang or Gengsheng Weng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Chen, Z., Yang, F. et al. Understanding the effects of nucleating agent concentration on the polymorphic behavior of β-nucleated isotactic polypropylene with different melt structures. Colloid Polym Sci 293, 2061–2073 (2015). https://doi.org/10.1007/s00396-015-3605-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3605-9

Keywords

Navigation