Skip to main content

Advertisement

Log in

“Nanosized latexes for textile printing applications obtained by miniemulsion polymerization”

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We report the synthesis and design of aqueous monodisperse copolymer latexes by miniemulsion polymerization and their application as binders in pigment printing and ink-jet printing of cotton fabrics. For that purpose, miniemulsion radical polymerization was carried out with a high content of the soft butyl acrylate (BA) and a low content of the hard methyl methacrylate (MMA) in the presence of hexadecane as osmotic costabilizer. The addition of small amounts of functional monomers such as methacrylic acid MAA and N-methylol acrylamide NMA to some miniemulsion recipes allowed to impart cross-linking sites and functionality to the copolymer chains. Dynamic light scattering (DLS), small angle neutron scattering (SANS), and transmission electron microscopy (TEM) showed that the particle size diameter and size distributions could be controlled in the range of 50 to 400 nm by the amount of SDS surfactant, while the presence of a costabilizer such as hexadecane determines the particle size and, to a lesser extent, the polydispersity of the obtained miniemulsion latex dispersions. The glass transition temperature of the different miniemulsion latexes ranged between −14 and −33 °C, depending on the monomer composition. Selected samples of these nanolatexes were then employed in textile printing. The miniemulsion binders with their uniform shape and smaller size have technological advantages over conventional processes for the pigment and ink-jet printing and yielded better printing properties in terms of softness, fastness, and color strength of the printed fabric. Accordingly, by optimized use of the miniemulsion method, one is not only able to control the particle size but also to improve the properties of these latexes for textile applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ugelstad J, El-Aasser MS, Vanderhoff JW (1973) Emulsion polymerization: initiation of polymerization in monomer droplets. J Polym Sci Polym Lett Ed 11:503–513

    Article  CAS  Google Scholar 

  2. Choi YT, El-Aasser MS, Sudol ED, Vanderhoff JW (1985) Polymerization of styrene miniemulsions. J Polym Sci Polym Lett Ed 23:2973–2987

    Article  CAS  Google Scholar 

  3. Delgado J, El-Aasser MS, Vanderhoff JW (1986) Miniemulsion copolymerization of vinyl acetate and butyl acrylate. I. Differences between the miniemulsion copolymerization and the emulsion copolymerization process. J Polym Sci Polym Chem Ed 24:861–874

    Article  CAS  Google Scholar 

  4. Tang PL, Sudol ED, Silebi CA, El-Aasser MS (1991) Miniemulsion polymerization -a comparative study of preparative variables. J Appl Polym Sci 43:1059–1066

    Article  CAS  Google Scholar 

  5. Miller CM, Sudol ED, Silebi CA, El-Aasser MS (1995) Polymerization of miniemulsions prepared from polystyrene in styrene solutions. 1. Benchmarks and limits. Macromolecules 28:2754–2764

    Article  CAS  Google Scholar 

  6. Hansen FK, Ugelstad J (1979) Particle nucleation in emulsion polymerization. IV. Nucleation in monomer droplets. J Polym Sci Polym Chem Ed 17:3069–3082

    Article  CAS  Google Scholar 

  7. Chamberlain BJ, Napper DH, Gilbert RG (1982) Polymerization within styrene emulsion droplets. J Chem Soc Faraday Trans 1(78):591–606

    Article  Google Scholar 

  8. Schork FJ, Poehlein GW, Wang S, Reimers J, Rodrigues J, Samer C (1999) Miniemulsion polymerization. Colloids Surf A Physiochem Eng Asp 153:39–45

    Article  CAS  Google Scholar 

  9. Landfester K (2001) The generation of nanoparticles in miniemulsions. Adv Mater 13:765–768

    Article  CAS  Google Scholar 

  10. Ouzineb K, Lord C, Lesauze N, Graillat C, Tanguy PA, Mckenna T (2006) Homogenisation devices for the production of miniemulsions. Chem Eng Sci 61:2994–3000

    Article  CAS  Google Scholar 

  11. Landfester K (2000) Recent developments in miniemulsions—formation and stability mechanisms. Macromol Symp 150:171–178

    Article  CAS  Google Scholar 

  12. Fontenot K, Schork FJ (1993) Batch polymerization of methyl methacrylate in mini/macroemulsions. J Appl Polym Sci 49:633–655

    Article  CAS  Google Scholar 

  13. Stang M, Karbstein H, Schubert H (1994) Adsorption kinetics of emulsifiers at oil–water interfaces and their effect on mechanical emulsification. Chem Eng Process 33:307–311

    Article  CAS  Google Scholar 

  14. Antonietti M, Landfester K (2002) Polyreactions in miniemulsions. Prog Polym Sci 27:689–757

    Article  CAS  Google Scholar 

  15. Ostwald W (1897) Studies on the formation and transformation of solid bodies. Z Phys Chem 22:289–330

    CAS  Google Scholar 

  16. Reimers JL, Skelland AHP, Schork FJ (1995) Monomer droplet stability in emulsion-polymerized latexes. Polym React Eng 3:235–260

    CAS  Google Scholar 

  17. Rodriguez VS, Delgado J, Silebi CA, El-Aasser MS (1989) Interparticle monomertransport in miniemulsions. Ind Eng Chem Res 28:65–74

    Article  CAS  Google Scholar 

  18. Abdou LAW, El-Molla MM, Hakeim OA, El-Gammal MS, Shamey R (2013) Synthesis of nanoscale binders through mini emulsion polymerization for textile pigment applications. Ind Chem Eng Res 52:2195–2200

    Article  CAS  Google Scholar 

  19. Eisenlohr R, Giesen V (1995) Pigment printing and ecology. Int Dyer 180:12–18

    Google Scholar 

  20. Galgali MR (1998) Environmental impact of textiles. Colourage 45:20–22

    CAS  Google Scholar 

  21. Jing LV, Min X, Shuilin C (2003) Synthesis and characterization of nonformaldehyde releasing and low-temperature curable binder. AATCC Rev 6:29–32

    Google Scholar 

  22. Richard D, Ferrand M, Kearley GJ (1996) Analysis and visualisation of neutron-scattering data. J Neutron Res 4:33–39

    Article  Google Scholar 

  23. Percus JK, Yevick G (1958) Analysis of classical statistical mechanics by means of collective coordinates. J Phys Rev 110:1–13

    Article  CAS  Google Scholar 

  24. Ashcroft NW, Lekner J (1966) Structure and resistivity of liquid metals. Phys Rev 145:83–90

    Article  CAS  Google Scholar 

  25. Gradzielski M, Langevin D, Farago B (1996) Experimental investigation of the structure of nonionic microemulsions and their relation to the bending elasticity of the amphiphilic film. Phys Rev E 53:3900–3919

    Article  CAS  Google Scholar 

  26. Cassidy PE (1980) Thermally stable polymers: syntheses and properties. Marcel Dekker, Inc., New York & Basel

    Google Scholar 

  27. Rabek JF (1980) Experimental method in polymer chemistry. Wiley, New York

    Google Scholar 

  28. Buback M, Feldermann A, Barner-Kowollik C, Lacik I (2001) Propagation rate coefficients of acrylate-methacrylate free-radical bulk copolymerizations. Macromolecules 34:5439–5448

    Article  CAS  Google Scholar 

  29. Landfester K, Bechthold N, Tiarks F, Antonietti M (1999) Formulation and stability mechanisms of polymerizable miniemulsions. Macromolecules 32:5222–5228

    Article  CAS  Google Scholar 

  30. Gradzielski M, Hoffmann H, Langevin D (1995) Solubilization of decane into the ternary system TDMAO/1-hexanol/water. J Phys Chem 99:12612–12623

    Article  CAS  Google Scholar 

  31. Rehfeld SJ (1967) Adsorption of sodium dodecyl sulfate at various hydrocarbon-water interfaces. J Phys Chem 71:738–745

    Article  CAS  Google Scholar 

  32. Thomas JC (1987) The determination of log normal particle size distributions by dynamic light scattering. J Colloid Interface Sci 117:187–192

    Article  CAS  Google Scholar 

  33. Pichot C (1990) Recent developments in the functionalization of latex particles. Makromol Chem Macromol Symp 35–36:327–348

    Article  Google Scholar 

  34. Fourdrin S, Rochery M, Lewandowski M, Ferreira M, Bourbigot S (2006) Rheological and thermogravimetric studies of the crosslinking process of functionalized acrylic latexes. J Appl Polym Sci 99:1117–1123

    Article  CAS  Google Scholar 

  35. Tsavalas JG, Sundberg DC (2010) Hydroplasticization of polymers: model predictions and application to emulsion polymers. Langmuir 26:6960–6966

    Article  CAS  Google Scholar 

  36. Krishnan S, Klein A, El-Aasser MS, Sudol ED (2003) Influence of chain transfer agent on the cross-linking of poly(n-butyl methacrylate-co-N-methylol acrylamide) latex particles and films. Macromolecules 36:3511–3518

    Article  CAS  Google Scholar 

  37. Derry RL, Higginbotham RS (1953) The flow properties of textile printing pastes. J Soc Dyers Colour 69:569–575

    Google Scholar 

  38. Dowds BF (1970) Variables in textile screen printing. J Soc Dyers Colour 86:512–519

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the valuable contributions of Dr. Ingo Hoffmann, Andreas Klee, Sören Selve (TU Berlin, Germany), Mrs. Angelika Lenz, Mrs. Sabine Frick, and Mrs. Stefanie Brenner (ITCF Denkendorf, Germany). Financial support of the Ph.D. thesis of M. Elgammal by the German Academic Exchange Service (DAAD) and the Egyptian Ministry of Higher Education is gratefully appreciated. The ILL is thanked for granting SANS beam time to this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahmoud Elgammal or Michael Gradzielski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elgammal, M., Prévost, S., Schweins, R. et al. “Nanosized latexes for textile printing applications obtained by miniemulsion polymerization”. Colloid Polym Sci 292, 1487–1500 (2014). https://doi.org/10.1007/s00396-014-3192-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3192-1

Keywords

Navigation