Skip to main content
Log in

Progress in silica polypeptide composite colloidal hybrids: from silica cores to fuzzy shells

  • Review
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Core–shell particles have attracted increased interest in the past two decades. The properties of these composite materials are a symbiosis between the core and shell features which neither can exhibit separately. Polypeptide composite particles (PCPs) are a newly expanding field of hybrid materials with potential future impact in a broad variety of applications. In this review, we present an overview about the progress made on designing PCPs. Past and present limitations in the fabrication of the cores and shells alone will be outlined. A special emphasis will be placed on the future challenges directed to design better materials by expanding the architectural repertoire which will benefit their functionality and their range of applications. The review also presents possible future trends and challenges in engineering polypeptide-based materials as platforms for targeted applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20

Similar content being viewed by others

References

  1. Lettinga MP, van Zandvoort M, van Kats CM, Philipse AP (2000) Phosphorescent colloidal silica spheres as tracers for rotational diffusion studies. Langmuir 16(15):6156–6165. doi:10.1021/la9916023

    CAS  Google Scholar 

  2. Salgueirino-Maceira V, Correa-Duarte MA (2007) Increasing the complexity of magnetic core/shell structured nanocomposites for biological applications. Adv Mater 19(23):4131–4144. doi:10.1002/adma.200700418

    CAS  Google Scholar 

  3. Martel S, Tremblay CC, Ngakeng S, Langlois G (2006) Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl Phys Lett 89(23):233904

    Google Scholar 

  4. Zou H, Wu SS, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108(9):3893–3957. doi:10.1021/cr068035q

    CAS  Google Scholar 

  5. Dietz E, Fery N, Hamann K (1974) Polyreactions on pigmented surfaces. 4. Polymerization of n-carboxy-alpha-amino-acid anhydrides on surface of silicon dioxide. Angew Makromol Chem 35:115–129

    CAS  Google Scholar 

  6. Heise A, Menzel H, Yim H, Foster MD, Wieringa RH, Schouten AJ, Erb V, Stamm M (1997) Grafting of polypeptides on solid substrates by initiation of N-carboxyanhydride polymerization by amino-terminated self-assembled monolayers. Langmuir 13(4):723–728

    CAS  Google Scholar 

  7. Tsubokawa N, Kobayashi K, Sone Y (1987) Grafting of polypeptide from carbon black by the ring-opening polymerization of γ-methyl l-glutamate N-carboxyanhydride initiated by amino groups on carbon black surface. Polym J 19(10):1147–1155

    CAS  Google Scholar 

  8. Fong B, Russo PS (1999) Organophilic colloidal particles with a synthetic polypeptide coating. Langmuir 15(13):4421–4426. doi:10.1021/la9815648

    CAS  Google Scholar 

  9. Wang YL, Chang YC (2003) Synthesis and conformational transition of surface-tethered polypeptide: poly(L-glutamic acid). Macromolecules 36(17):6503–6510. doi:10.1021/ma034092z

    CAS  Google Scholar 

  10. Block H (1983) Poly(γ-benzyl-L-glutamate) and other glutamic acid containing polymers. Gordon and Breach, New York

    Google Scholar 

  11. Miller WG (1978) Stiff chain polymer lyotropic liquid-crystals. Annu Rev Phys Chem 29:519–535. doi:10.1146/annurev.pc.29.100178.002511

    CAS  Google Scholar 

  12. Hamley IW (2010) Liquid crystal phase formation by biopolymers. Soft Matter 6(9):1863–1871. doi:10.1039/b923942a

    CAS  Google Scholar 

  13. Yen CC, Taguchi Y, Tokita M, Watanabe J (2010) Spontaneous formation of polar liquid crystal in lyotropic solution of helical poly(gamma-benzyl glutamate). Mol Cryst Liq Cryst 516:91–98. doi:10.1080/15421400903400712

    CAS  Google Scholar 

  14. Daly WH, Poché D, Negulescu II (1994) Poly ([gamma]-alkyl-[alpha], L-glutamate)s, derived from long chain paraffinic alcohols. Prog Polym Sci 19(1):79–135

    CAS  Google Scholar 

  15. Doty P, Yang JT (1956) Polypeptides. 7. Poly-gamma-benzyl-L-glutamate—the helix-coil transition in solution. J Am Chem Soc 78(2):498–500

    CAS  Google Scholar 

  16. Blout ER, Lenormant H (1957) Reversible configurational changes in poly-L-lysine hydrochloride induced by water. Nature 179(4567):960–963. doi:10.1038/179960a0

    CAS  Google Scholar 

  17. Applequist J (1963) On helix-coil equilibrium in polypeptides. J Chem Phys 38(4):934. doi:10.1063/1.1733787

    CAS  Google Scholar 

  18. Karasz FE, Oreilly JM, Bair HE (1964) Thermal helix-coil transition in poly-gamma-benxyl-L-glutamate. Nature 202(493):693. doi:10.1038/202693b0

    CAS  Google Scholar 

  19. Watanabe H, Yoshioka K, Wada A (1964) Electrooptical and dielectric investigations on the conformation and the electrical properties of poly-gamma-benzyl-L-glutamate in mixed solvents. Biopolymers 2(1):91–101. doi:10.1002/bip.1964.360020112

    CAS  Google Scholar 

  20. Ackerman T, Neumann E (1967) Experimental thermodynamics of helix-random coil transition. 1. Influence of polymer concentration and solvent composition in PBG-DCA-EDC system. Biopolymers 5(7):649. doi:10.1002/bip.1967.360050706

    Google Scholar 

  21. Itoh T, Hatanaka T, Ihara E, Inoue K (2012) Helix-coil transformation of poly(gamma-benzyl-L-glutamate) with polystyrene attached to the N or C terminus in trifluoroacetic acid-chloroform mixtures. Polym J 44(2):189–194. doi:10.1038/pj.2011.113

    CAS  Google Scholar 

  22. Wen KJ, Woody RW (1975) Conformational studies of poly(L-tyrosine)—helix-coil transition in dimethyl sulfoxide dichloroacetic acid mixtures. Biopolymers 14(9):1827–1840. doi:10.1002/bip.1975.360140905

    CAS  Google Scholar 

  23. Omura I, Teramoto A, Fujita H (1975) Dielectric-dispersion of polypeptide solutions. 2. Helix-coil transition of “poly(epsilon-carbobenzoxy-L-lysine) in m-cresol”. Macromolecules 8(3):284–290

    CAS  Google Scholar 

  24. Wada A (1971) Dielectric evidence of chemical relaxation in the helix-coil transition of polypeptides. Chem Phys Lett 8(2):211–213

    CAS  Google Scholar 

  25. Huang J, Heise A (2013) Stimuli responsive synthetic polypeptides derived from N-carboxyanhydride (NCA) polymerisation. Chem Soc Rev. doi:10.1039/c3cs60063g

    Google Scholar 

  26. Sakajiri K, Satoh K, Yen CC, Tokita M, Watanabe J (2011) Helix-helix transition of poly(beta-phenylpropyl L-aspartate) embedded in stable helical poly(gamma-phenylethyl glutamate) matrix. Polymer 52(22):5053–5057. doi:10.1016/j.polymer.2011.09.008

    CAS  Google Scholar 

  27. Sallach RE, Wei M, Biswas N, Conticello VP, Lecommandoux S, Dluhy RA, Chaikof EL (2006) Micelle density regulated by a reversible switch of protein secondary structure. J Am Chem Soc 128(36):12014–12019

    CAS  Google Scholar 

  28. Iler RK (1955) Colloid chemistry of silica and silicates. Cornell University Press, Ithaca, New York

    Google Scholar 

  29. Kolbe G (1956) The complex chemical behavior of silica. Jena, Germany

    Google Scholar 

  30. Stober W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Google Scholar 

  31. Brinker CJS, Scherer GW (2004) Sol–gel science: the physics and chemistry of sol–gel processing. Academies Press, Boston

    Google Scholar 

  32. Van Helden AK, Jansen JW, Vrij A (1981) Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents. J Colloid Interface Sci 81(2):354–368

    Google Scholar 

  33. Bogush GH, Tracy MA, Zukoski CF (1988) Preparation of monodisperse silica particles—control of size and mass fraction. J Non-Cryst Solids 104(1):95–106. doi:10.1016/0022-3093(88)90187-1

    CAS  Google Scholar 

  34. Bogush GH, Zukoski CF (1991) Uniform silica particle-precipitation—an aggregative growth-model. J Colloid Interface Sci 142(1):19–34. doi:10.1016/00219797(91)90030-c

    CAS  Google Scholar 

  35. Matsoukas T, Gulari E (1991) Self-sharpening distributions revisited polydispersity in growth by monomer addition. J Colloid Interface Sci 145(2):557–562. doi:10.1016/00219797(91)90385-l

    CAS  Google Scholar 

  36. Zhang JH, Zhan P, Wang ZL, Zhang WY, Ming NB (2003) Preparation of monodisperse silica particles with controllable size and shape. J Mater Res 18(3):649–653

    CAS  Google Scholar 

  37. Watanabe R, Yokoi T, Kobayashi E, Otsuka Y, Shimojima A, Okubo T, Tatsumi T (2011) Extension of size of monodisperse silica nanospheres and their well-ordered assembly. J Colloid Interface Sci 360(1):1–7. doi:10.1016/j.jcis.2010.09.001

    CAS  Google Scholar 

  38. Chang SM, Lee M, Kim W-S (2005) Preparation of large monodispersed spherical silica particles using seed particle growth. J Colloid Interface Sci 286(2):536–542

    CAS  Google Scholar 

  39. Rao KS, El-Hami K, Kodaki T, Matsushige K, Makino K (2005) A novel method for synthesis of silica nanoparticles. J Colloid Interface Sci 289(1):125–131

    CAS  Google Scholar 

  40. Balamurugan M, Saravanan S (2012) Producing nanosilica from Sorghum vulgare seed heads. Powder Technol 224:345–350. doi:10.1016/j.powtec.2012.03.017

    CAS  Google Scholar 

  41. Sugimoto M (1999) The past, present, and future of ferrites. J Am Ceram Soc 82(2):269–280

    CAS  Google Scholar 

  42. Rado GT, Suhl H (1963) Magnetism VIII: spin arrangements and crystal structure, domains, and micromagnetics. Academic Press Inc, London

    Google Scholar 

  43. Khalafalla SE, Reimers GW (1980) Preparation of dilution-stable aqueous magnetic fluids. IEEE Trans Magn 16(2):178–183. doi:10.1109/tmag.1980.1060578

    Google Scholar 

  44. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17(2):1247–1248. doi:10.1109/tmag.1981.1061188

    Google Scholar 

  45. Philipse AP, Vanbruggen MPB, Pathmamanoharan C (1994) Magnetic silica dispersions—preparation and stability of surface-modified silica particles with a magnetic core. Langmuir 10(1):92–99. doi:10.1021/la00013a014

    CAS  Google Scholar 

  46. van Ewijk GA, Vroege GJ, Philipse AP (1999) Convenient preparation methods for magnetic colloids. J Magn Magn Mater 201:31–33. doi:10.1016/s03048853(99)00080-3

    Google Scholar 

  47. Wang H, Nakamura H, Yao K, Maeda H, Abe E (2001) Effect of solvents on the preparation of silica-coated magnetic particles. Chem Lett 11:1168–1169

    Google Scholar 

  48. Aliev FG, Correa-Duarte MA, Mamedov A, Ostrander JW, Giersig M, Liz-Marzan LM, Kotov NA (1999) Layer-by-layer assembly of core–shell magnetite nanoparticles: effect of silica coating on interparticle interactions and magnetic properties. Adv Mater 11(12):1006–1010. doi:10.1002/(sici)15214095(199908)11:12<1006::aid-adma1006>3.0.co;2-2

    CAS  Google Scholar 

  49. Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T (2004) Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater 284:145–160. doi:10.1016/j.jmmm.2004.06.032

    CAS  Google Scholar 

  50. Lu Y, Yin YD, Mayers BT, Xia YN (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol–gel approach. Nano Lett 2(3):183–186. doi:10.1021/nl015681q

    CAS  Google Scholar 

  51. Tsai YL, Chun CH, Ou JL, Huang CK, Chen CC (2006) Magnetic Fe3O4 nanoparticles synthesized for preparations of silica-coated composites. Desalination 200(1–3):97–99. doi:10.1016/j.desal.2006.03.256

    CAS  Google Scholar 

  52. Yang D, Hu JH, Fu SK (2009) Controlled synthesis of magnetite-silica nanocomposites via a seeded sol–gel approach. J Phys Chem C 113(18):7646–7651. doi:10.1021/jp900868d

    CAS  Google Scholar 

  53. Iida H, Takayanagi K, Nakanishi T, Osaka T (2007) Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties 14 by controlled hydrolysis. J Colloid Interface Sci 314(1):274–280. doi:10.1016/j.jcis.2007.05.047

    CAS  Google Scholar 

  54. Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Bohm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41(11):4306–4334

    CAS  Google Scholar 

  55. Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7(1):1–37

    CAS  Google Scholar 

  56. Shen LF, Laibinis PE, Hatton TA (1999) Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir 15(2):447–453. doi:10.1021/la9807661

    CAS  Google Scholar 

  57. Hong RY, Li JH, Li HZ, Ding J, Zheng Y, Wei DG (2008) Synthesis of Fe3O4 nanoparticles without inert gas protection used as precursors of magnetic fluids. J Magn Magn Mater 320(9):1605–1614. doi:10.1016/j.jmmm.2008.01.015

    CAS  Google Scholar 

  58. Liu ZL, Wang HB, Lu QH, Du GH, Peng L, Du YQ, Zhang SM, Yao KL (2004) Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles. J Magn Magn Mater 283(2–3):258–262. doi:10.1016/j.jmmm.2004.05.031

    CAS  Google Scholar 

  59. Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225(1–2):30–36. doi:10.1016/s03048853(00)01224-5

    CAS  Google Scholar 

  60. Chaudhuri RG, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433. doi:10.1021/cr100449n

    Google Scholar 

  61. Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49(3–4):125–170. doi:10.1179/095066004225021882

    CAS  Google Scholar 

  62. Ban I, Drofenik M, Makovec D (2005) The synthesis of silica-coated permalloy nanoparticles using a water-in-oil microemulsion. In: Uskokovic DP, Milonjic SK, Rakovic DI (eds) Current Research in Advanced Materials and Processes, 494, pp 161–165

  63. Liu YM, Wu YC (2012) Synthesis of europium-doped silica microspheres using the sol–gel microencapsulation method. J Sol–gel Sci Technol 63(1):36–44. doi:10.1007/s10971-012-2760-4

    CAS  Google Scholar 

  64. Lin JC, Dipre JT, Yates MZ (2003) Microemulsion-directed synthesis of molecular sieve fibers. Chem Mat 15(14):2764–2773. doi:10.1021/cm0341437

    CAS  Google Scholar 

  65. Shchukin DG, Sukhorukov GB (2004) Nanoparticle synthesis in engineered organic nanoscale reactors. Adv Mater 16(8):671–682. doi:10.1002/adma.200306466

    CAS  Google Scholar 

  66. Saito T, Ohshima S, Xu WC, Ago H, Yumura M, Iijima S (2005) Size control of metal nanoparticle catalysts for the gas-phase synthesis of single-walled carbon nanotubes. J Phys Chem B 109(21):10647–10652. doi:10.1021/jp044200z

    CAS  Google Scholar 

  67. Shangguan T, Cabral-Lilly D, Purandare U, Godin N, Ahl P, Janoff A, Meers P (2000) A novel N-acyl phosphatidylethanolamine-containing delivery vehicle for spermine-condensed plasmid DNA. Gene Ther 7(9):769–783. doi:10.1038/sj.gt.3301156

    CAS  Google Scholar 

  68. Pileni MP (2001) Nanocrystal self-assemblies: fabrication and collective properties. J Phys Chem B 105(17):3358–3371. doi:10.1021/jp0039520

    CAS  Google Scholar 

  69. Asua JM (2002) Miniemulsion polymerization. Prog Polym Sci 27(7):1283–1346

    CAS  Google Scholar 

  70. Uskokovic V, Drofenik M (2005) Synthesis of materials within reverse micelles. Surf Rev Lett 12(2):239–277. doi:10.1142/s0218625x05007001

    CAS  Google Scholar 

  71. Dinega DP, Bawendi MG (1999) A solution-phase chemical approach to a new crystal structure of cobalt. Angew Chem Int Edit 38(12):1788–1791. doi:10.1002/(sici)1521-3773(19990614)38:12<1788::aid-anie1788>3.0.co;2-2

    CAS  Google Scholar 

  72. Tracy JB, Weiss DN, Dinega DP, Bawendi MG (2005) Exchange biasing and magnetic properties of partially and fully oxidized colloidal cobalt nanoparticles. Physical Review B 72(6): 064404. doi:06440410.1103/PhysRevB.72.064404

    Google Scholar 

  73. Hess PH, Parker PH (1966) Polymers for stabilization of colloidal cobalt particles. J Appl Polym Sci 10(12):1915. doi:10.1002/app.1966.070101209

    CAS  Google Scholar 

  74. Ould-Ely T, Amiens C, Chaudret B, Snoeck E, Verelst M, Respaud M, Broto JM (1999) Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties. Chem Mat 11(3):526

    Google Scholar 

  75. Carpenter EE, Sangregorio C, O’Connor CJ (1999) Effects of shell thickness on blocking temperature of nanocomposites of metal particles with gold shells. IEEE Trans Magn 35(5):3496–3498. doi:10.1109/20.800568

    CAS  Google Scholar 

  76. Sobal NS, Hilgendorff M, Mohwald H, Giersig M, Spasova M, Radetic T, Farle M (2002) Synthesis and structure of colloidal bimetallic nanocrystals: the non-alloying system Ag/Co. Nano Lett 2(6):621–624. doi:10.1021/nl025533f

    CAS  Google Scholar 

  77. Nikitenko SI, Koltypin Y, Palchik O, Felner I, Xu XN, Gedanken A (2001) Synthesis of highly magnetic, air-stable iron iron carbide nanocrystalline particles by using power ultrasound. Angew Chem-Int Edit 40(23):4447. doi:10.1002/15213773(20011203)40:23<4447::aid-anie4447>3.0.co;2-j

    CAS  Google Scholar 

  78. Liz-Marzan LM, Giersig M, Mulvaney P (1996) Homogeneous silica coating of vitreophobic colloids. Chem Commun 6:731–732. doi:10.1039/cc9960000731

    Google Scholar 

  79. Kobayashi Y, Horie M, Konno M, Rodriguez-Gonzalez B, Liz-Marzan LM (2003) Preparation and properties of silica-coated cobalt nanoparticles. J Phys Chem B 107(30):7420–7425. doi:10.1021/jp027759c

    CAS  Google Scholar 

  80. Guerrero-Martinez A, Perez-Juste J, Liz-Marzan LM (2010) Recent progress on silica coating of nanoparticles and related nanomaterials. Adv Mater 22(11):1182–1195. doi:10.1002/adma.200901263

    CAS  Google Scholar 

  81. Repko A, Niznansky D, Poltierova-Vejpravova J (2011) A study of oleic acid-based hydrothermal preparation of CoFe2O4 nanoparticles. J Nanopart Res 13(10):5021–5031. doi:10.1007/s11051-011-0483-z

    CAS  Google Scholar 

  82. Sun SH, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li GX (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126(1):273–279. doi:10.1021/ja0380852

    CAS  Google Scholar 

  83. Kwon SG, Piao Y, Park J, Angappane S, Jo Y, Hwang NM, Park JG, Hyeon T (2007) Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J Am Chem Soc 129(41):12571–12584. doi:10.1021/ja074633q

    CAS  Google Scholar 

  84. Roca AG, Morales MP, O’Grady K, Serna CJ (2006) Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology 17(11):2783–2788. doi:10.1088/0957-4484/17/11/010

    CAS  Google Scholar 

  85. Ravikumar C, Bandyopadhyaya R (2011) Mechanistic study on magnetite nanoparticle formation by thermal decomposition and coprecipitation routes. J Phys Chem C 115(5):1380–1387. doi:10.1021/jp105304w

    CAS  Google Scholar 

  86. Wu S, Sun AZ, Zhai FQ, Wang J, Xu WH, Zhang Q, Volinsky AA (2011) Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett 65(12):1882–1884. doi:10.1016/j.matlet.2011.03.065

    CAS  Google Scholar 

  87. Zhang SJ, Liu XH, Zhou LP, Peng WJ (2012) Magnetite nanostructures: one-pot synthesis, superparamagnetic property and application in magnetic resonance imaging. Mater Lett 68:243–246. doi:10.1016/j.matlet.2011.10.070

    CAS  Google Scholar 

  88. Mizutani N, Iwasaki T, Watano S, Yanagida T, Kawai T (2010) Size control of magnetite nanoparticles in hydrothermal synthesis by coexistence of lactate and sulfate ions. Curr Appl Phys 10(3):801–806. doi:10.1016/j.cap.2009.09.018

    Google Scholar 

  89. Xu CB, Teja AS (2008) Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles. J Supercrit Fluids 44(1):85–91. doi:10.1016/j.supflu.2007.09.033

    CAS  Google Scholar 

  90. Hou YL, Kondoh H, Shimojo M, Kogure T, Ohta T (2005) High-yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characterization. J Phys Chem B 109(41):19094–19098. doi:10.1021/jp0521149

    CAS  Google Scholar 

  91. You-Ping Y, Ren-Sheng L, Ke-Long H, Li-Ping W, Su-Qin L, Wen-Wen Z (2007) Preparation and electrochemical performance of nanosized Co3O4 via hydrothermal method. T Nonferr Metal Soc 17(6):1334–1338

    Google Scholar 

  92. Cannas C, Musinu A, Ardu A, Orru F, Peddis D, Casu M, Sanna R, Angius F, Diaz G, Piccaluga G (2010) CoFe2O4 and CoFe2O4/SiO2 core/shell nanoparticles: magnetic and spectroscopic study. Chem Mat 22(11):3353–3361. doi:10.1021/cm903837g

    CAS  Google Scholar 

  93. Komarneni S, Katsuki H (2002) Nanophase materials by a novel microwave-hydrothermal process. Pure Appl Chem 74(9):1537–1543. doi:10.1351/pac200274091537

    CAS  Google Scholar 

  94. Balasubramaniam C, Khollam YB, Bannerjee I, Bakare PP, Date SK, Das AK, Bhoraskar S (2004) DC thermal arc-plasma preparation of nanometric and stoichiometric spherical magnetite (Fe3O4) powders. Mater Lett 58(30):3958–3962. doi:10.1016/j.matlet.2004.09.003

    CAS  Google Scholar 

  95. Kim KM, Kang JH, Vinu A, Choy JH, Oh JM (2013) Inorganic nanomedicines and their labeling for biological imaging. Curr Top Med Chem 13(4):488–503

    CAS  Google Scholar 

  96. Cinteza, L. O. (2010) Quantum dots in biomedical applications: advances and challenges. J. Nanophotonics 4(1):042503. doi:04250310.1117/1.3500388

    Google Scholar 

  97. Salgueirino-Maceira V, Correa-Duarte MA, Spasova M, Liz-Marzan LM, Farle M (2006) Composite silica spheres with magnetic and luminescent functionalities. Adv Funct Mater 16(4):509–514. doi:10.1002/adfm.200500565

    CAS  Google Scholar 

  98. Vanblaaderen A, Vrij A (1992) Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir 8(12):2921–2931. doi:10.1021/la00048a013

    CAS  Google Scholar 

  99. Wang L, Tan WH (2006) Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett 6(1):84–88. doi:10.1021/nl052105b

    CAS  Google Scholar 

  100. Yang W, Zhang CG, Qu HY, Yang HH, Xu JG (2004) Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays. Anal Chim Acta 503(2):163–169. doi:10.1016/j.aca.2003.10.045

    CAS  Google Scholar 

  101. Deng YH, Wang CC, Hu JH, Yang WL, Fu SK (2005) Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloid Surf A 262(1–3):87–93. doi:10.1016/j.colsurfa.2005.04.009

    CAS  Google Scholar 

  102. Giaume D, Poggi M, Casanova D, Mialon G, Lahlil K, Alexandrou A, Gacoin T, Boilot JP (2008) Organic functionalization of luminescent oxide nanoparticles toward their application as biological probes. Langmuir 24(19):11018–11026. doi:10.1021/la8015468

    CAS  Google Scholar 

  103. Vroman L (1974) Surface charge, protein adsorption, and thrombosis. Science 184(4136):585–586. doi:10.1126/science.184.4136.585

    CAS  Google Scholar 

  104. Sen T, Sebastianelli A, Bruce IJ (2006) Mesoporous silica-magnetite nanocomposite: fabrication and applications in magnetic bioseparations. J Am Chem Soc 128(22):7130–7131. doi:10.1021/ja061393q

    CAS  Google Scholar 

  105. Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130(1):28−+. doi:10.1021/ja0777584

    Google Scholar 

  106. Coskun M, Korkmaz M, Firat T, Jaffari GH, Shah SI (2010) Synthesis of SiO2 coated NiFe2O4 nanoparticles and the effect of SiO2 shell thickness on the magnetic properties. J. Appl. Phys., 107(9)

  107. Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Accounts Chem Res 44(10):925–935. doi:10.1021/ar2000327

    CAS  Google Scholar 

  108. Lallana E, Sousa-Herves A, Fernandez-Trillo F, Riguera R, Fernandez-Megia E (2012) Click chemistry for drug delivery nanosystems. Pharm Res 29(1):1–34. doi:10.1007/s11095-011-0568-5

    CAS  Google Scholar 

  109. Schladt TD, Schneider K, Schild H, Tremel W (2011) Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans 40(24):6315–6343. doi:10.1039/c0dt00689k

    CAS  Google Scholar 

  110. Wu W, He QG, Jiang CZ (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397–415. doi:10.1007/s11671-008-9174-9

    CAS  Google Scholar 

  111. Soto-Cantu E, Cueto R, Koch J, Russo PS (2012) Synthesis and rapid characterization of amine-functionalized silica. Langmuir 28(13):5562–5569. doi:10.1021/la204981b

    CAS  Google Scholar 

  112. Quang DV, Sarawade PB, Hilonga A, Kim JK, Chai YG, Kim SH, Ryu JY, Kim HT (2011) Preparation of amino functionalized silica micro beads by dry method for supporting silver nanoparticles with antibacterial properties. Colloids Surf A 389(1–3):118–126. doi:10.1016/j.colsurfa.2011.08.042

    CAS  Google Scholar 

  113. Assink RA, Kay BD (1988) Sol–gel kinetics I. Functional group kinetics. J Non-Cryst Solids 99(2–31):359–370

    CAS  Google Scholar 

  114. Rother D, Sen T, East D, Bruce IJ (2011) Silicon, silica and its surface patterning/activation with alkoxy- and amino-silanes for nanomedical applications. Nanomedicine 6(2):281–300. doi:10.2217/nnm.10.159

    CAS  Google Scholar 

  115. Acosta EJ, Carr CS, Simanek EE, Shantz DF (2004) Engineering nanospaces: iterative synthesis of melamine-based dendrimers on amine-functionalized SBA-15 leading to complex hybrids with controllable chemistry and porosity. Adv Mater 16(12):985. doi:10.1002/adma.200306323

    CAS  Google Scholar 

  116. Luechinger M, Prins R, Pirngruber GD (2005) Functionalization of silica surfaces with mixtures of 3-aminopropyl and methyl groups. Microporous Mesoporous Mater 85(1–2):111–118. doi:10.1016/j.micromeso.2005.05.031

    CAS  Google Scholar 

  117. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. J Am Chem Soc 114(27):10834–10843. doi:10.1021/ja00053a020

    CAS  Google Scholar 

  118. Burkett SL, Sims SD, Mann S (1996) Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chem Commun 11:1367–1368. doi:10.1039/cc9960001367

    Google Scholar 

  119. Wulff G, Heide B, Helfmeier G (1987) Enzyme-analog built polymers. 24. On the distance accuracy of functional-groups in polymers and silicas introduced by a template approach. React Polym 6(2–3):299–310

    CAS  Google Scholar 

  120. Bass JD, Katz A (2003) Thermolytic synthesis of imprinted amines in bulk silica. Chem Mat 15(14):2757–2763. doi:10.1021/cm021822t

    CAS  Google Scholar 

  121. McKittrick MW, Jones CW (2003) Toward single-site functional materials-preparation of amine-functionalized surfaces exhibiting site-isolated behavior. Chem Mat 15(5):1132–1139. doi:10.1021/cm020952z

    CAS  Google Scholar 

  122. McKittrick MW, Jones CW (2005) Modulating the reactivity of an organometallic catalyst via immobilization on a spatially patterned silica surface. Chem Mat 17(19):4758–4761. doi:10.1021/cm050925j

    CAS  Google Scholar 

  123. Khosroshahi ME, Ghazanfari L (2012) Synthesis and functionalization of SiO2 coated Fe3O4 nanoparticles with amine groups based on self-assembly. Mater Sci Eng C 32(5):1043–1049. doi:10.1016/j.Msec.2011.09.003

    CAS  Google Scholar 

  124. Xing YJ, Borguet E (2007) Specificity and sensitivity of fluorescence labeling of surface species. Langmuir 23(2):684–688. doi:10.1021/la060994s

    CAS  Google Scholar 

  125. Aflori M, Drobota M, Timpu D, Barboiu V (2008) Studies of amine treatments influence on poly(ethyleneterepthalate) films. Optoelectron Adv Mat 2(5):291–295

    CAS  Google Scholar 

  126. Kaiser E, Colescot R, Bossinge C, Cook PI (1970) Color test for detection of free terminal amino groups in solid-phase synthesis of peptides. Anal Chem 34(2):595. doi:10.1016/0003-2697(70)90146-6

    CAS  Google Scholar 

  127. Coussot G, Faye C, Ibrahim A, Ramonda M, Dobrijevic M, Le Postollec A, Granier F, Vandenabeele-Trambouze O (2011) Aminated dendritic surfaces characterization: a rapid and versatile colorimetric assay for estimating the amine density and coating stability. Anal Bioanal Chem 399(6):2295–2302. doi:10.1007/s00216-010-4612-9

    CAS  Google Scholar 

  128. Noel S, Liberelle B, Robitaille L, De Crescenzo G (2011) Quantification of primary amine groups available for subsequent biofunctionalization of polymer surfaces. Bioconjugate Chem 22(8):1690–1699. doi:10.1021/bc200259c

    CAS  Google Scholar 

  129. Chen Y, Zhang YQ (2011) Fluorescent quantification of amino groups on silica nanoparticle surfaces. Anal Bioanal Chem 399(7):2503–2509. doi:10.1007/s00216-010-4622-7

    CAS  Google Scholar 

  130. Bartholome C, Beyou E, Bourgeat-Lami E, Chaumont P, Lefebvre F, Zydowicz N (2005) Nitroxide-mediated polymerization of styrene initiated from the surface of silica nanoparticles. In situ generation and grafting of alkoxyamine initiators. Macromolecules 38(4):1099–1106. doi:10.1021/ma048501i

    CAS  Google Scholar 

  131. Borase T, Iacono M, Ali SI, Thornton PD, Heise A (2012) Polypeptide core–shell silica nanoparticles with high grafting density by N-carboxyanhydride (NCA) ring opening polymerization as responsive materials and for bioconjugation. Polym Chem 3(5):1267–1275. doi:10.1039/c2py00610c

    CAS  Google Scholar 

  132. Kricheldorf HR (1990) Models of biopolymers by ring-opening polymerization. CRC, Boca Raton, FL

    Google Scholar 

  133. Leuchs H, Geiger W (1908) Concerning the anhydride on alpha-amino-N-carbonic acids and that of alpha-amino acids. Berichte Der Deutschen Chemischen Gesellschaft 41:1721–1726. doi:10.1002/cber.19080410232

    CAS  Google Scholar 

  134. Curtius T (1930) The formation of urea from azide from mono- and dialkyl acetic acid. J Fur Praktische Chemie Leipzig 125(1/12):152–156. doi:10.1002/prac.19301250109

    CAS  Google Scholar 

  135. Wessely F, Sigmund F (1926) Investigations on alpha-amino-N-carbonic acid anhydrides. III. (On knowledge of highly molecular compounds). Hoppe-Seylers Zeitschrift Fur Physiologische Chemie 159(1/4):102–119. doi:10.1515/bchm2.1926.159.1-4.102

    CAS  Google Scholar 

  136. Fuchs F (1922) On N-carbonic acid-anhydride. Berichte Der Deutschen Chemischen Gesellschaft 55:2943–2943. doi:10.1002/cber.19220550902

    Google Scholar 

  137. Farthing AC, Reynolds RJW (1950) Anhydro-N-carboxy-DL-beta-phenylalanine. Nature 165(4199):647–647. doi:10.1038/165647a0

    CAS  Google Scholar 

  138. Fuller WD, Verlander MS, Goodman M (1976) Procedure for facile synthesis of amino-acid n-carboxyanhydrides. Biopolymers 15(9):1869–1871. doi:10.1002/bip.1976.360150922

    CAS  Google Scholar 

  139. Cornille F, Copier J-L, Senet J-P, Robin Y (2002) Isochem Paris Cedex US Patent 6479665, 12 Nov 2002

  140. Dorman LC, Shiang WR, Meyers PA (1992) Purification of gamma-benzyl and gamma-methyl L-glutamate N-carboxyanhydrides by rephosgenation. Synth Commun 22(22):3257–3262. doi:10.1080/00397919208021140

    CAS  Google Scholar 

  141. Daly WH, Poché D (1988) The preparation of N-carboxyanhydrides of α-amino acids using bis(trichloromethyl)carbonate. Tetrahedron Lett 29(46):5859–5862

    CAS  Google Scholar 

  142. Wilder R, Mobashery S (1992) The use of triphosgene in preparation of N-carboxy-alpha-amino acid anhydrides. J Org Chem 57(9):2755–2756. doi:10.1021/jo00035a044

    CAS  Google Scholar 

  143. Poché DS, Moore MJ, Bowles JL (1999) An unconventional method for purifying the N-carboxyanhydride derivatives of gamma-alkyl-L-glutamates. Synth Commun 29(5):843–854. doi:10.1080/00397919908086042

    Google Scholar 

  144. Szwarc M (1965) Yhe kinetics and mechanism of N-carboxy-α-amino-acid anhydride (NCA) polymerisation tp poly-amino acids. Advance in Polymer Science 4:1–65

    CAS  Google Scholar 

  145. Dewey RS, Schoenew E, Joshua H, Paleveda WJ, Schwam H, Barkemey H, Arison BH, Veber DF, Strachan RG, Milkowsk J, Denkewal R, Hirschma R (1971) Synthesis of peptides in aqueous medium. 7. Preparation and use of 2,5-thiazolidinediones in peptide synthesis. J Org Chem 36(1):49

    CAS  Google Scholar 

  146. Kricheldorf HR (2006) Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides. Angew Chem Int Edit 45(35):5752–5784. doi:10.1002/anie.200600693

    CAS  Google Scholar 

  147. Voet D, Voet JG (1995). Wiley, New York

  148. Kricheldorf HR (1977) Mechanism of NCA-polymerization. 4. Synthesis and reactions of N-acyl-NCA. Macromol Chem Phys 178(4):905–939

    CAS  Google Scholar 

  149. Waley SG, Watson J (1949) The kinetics of the polymerization of sarcosine carbonic anhydride. Proc R Soc A 199(1059):499–517. doi:10.1098/rspa.1949.0151

    CAS  Google Scholar 

  150. Lundberg RD, Doty P (1957) Polypeptides. 17. A study of the kinetics of the primary amine-initiated polymerization of N-carboxy-anhydrides with special reference to configurational and stereochemical effects. J Am Chem Soc 79(15):3961–3972

    CAS  Google Scholar 

  151. Frankel M, Katchalski E (1943) Derivatives of N-carboxy-alpha-amino acid esters. J Am Chem Soc 65:1670–1674. doi:10.1021/ja01249a003

    CAS  Google Scholar 

  152. Heyns K, Schultze H, Brockmann R (1958) Zum mechanismus der polymerisation von aminosaure-N-carbonsaureanhydriden - untersuchungen zum isotopie-effekt.2. Annalen Der Chemie-Justus Liebig 611(1–3):33–39

    CAS  Google Scholar 

  153. Ballard DGH, Bamford CH (1954) Studies in polymerization. 7. The polymerization of N-carboxy-alpha-amino acid anhydrides. Proc R Soc A 223(1155):495–520. doi:10.1098/rspa.1954.0133

    CAS  Google Scholar 

  154. Kricheldorf HR, Von Lossow C, Schwarz G (2006) Tertiary amine catalyzed polymerizations of alpha-amino acid N-carboxyanhydrides: the role of cyclization. J Polymer Sci Part A-Polymer Chem 44(15):4680–4695. doi:10.1002/pola.21553

    CAS  Google Scholar 

  155. Flory PJ (1946) Fundamental principles of condensation polymerization. Chem Rev 39(1):137–197. doi:10.1021/cr60122a003

    CAS  Google Scholar 

  156. Kanazawa H, Ohashi Y, Sasada Y, Kawai T (1982) Polymerization of N-carboxy amino-acid anhydrides in the solid-state. 2. Relation between polymerizability and molecular arrangement in l-leucine NCA and l-alanine NCA crystals. Journal of Polymer Science Part B-Polymer Physics 20(10):1847–1862. doi:10.1002/pol.1982.180201008

    CAS  Google Scholar 

  157. Vayaboury W, Giani O, Cottet H, Deratani A, Schue F (2004) Living polymerization of alpha-amino acid N-carboxyanhydrides (NCA) upon decreasing the reaction temperature. Macromol Rapid Commun 25(13):1221–1224. doi:10.1002/marc.200400111

    CAS  Google Scholar 

  158. Deming TJ (1998) Amino acid derived nickelacycles: intermediates in nickel-mediated polypeptide synthesis. J Am Chem Soc 120(17):4240–4241. doi:10.1021/ja980313i

    CAS  Google Scholar 

  159. Deming TJ (1999) Cobalt and iron initiators for the controlled polymerization of alpha-amino acid-N-carboxyanhydrides. Macromolecules 32(13):4500–4502. doi:10.1021/ma9902899

    CAS  Google Scholar 

  160. Deming TJ (2007) Synthetic polypeptides for biomedical applications. Prog Polym Sci 32(8–9):858–875. doi:10.1016/j.progpolymsci.2007.05.010

    CAS  Google Scholar 

  161. Deming TJ (2002) Methodologies for preparation of synthetic block copolypeptides: materials with future promise in drug delivery. Adv Drug Deliv 54(8):1145–1155

    CAS  Google Scholar 

  162. Hadjichristidis N, Iatrou H, Pitsikalis M, Sakellariou G (2009) Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of alpha-amino acid N-carboxyanhydrides. Chem Rev 109(11):5528–5578. doi:10.1021/cr900049t

    CAS  Google Scholar 

  163. Pickel DL, Politakos N, Avgeropoulos A, Messman JM (2009) A mechanistic study of alpha-(amino acid)-N-carboxyanhydride polymerization: comparing initiation and termination events in high-vacuum and traditional polymerization techniques. Macromolecules 42(20):7781–7788. doi:10.1021/ma901340y

    CAS  Google Scholar 

  164. Lu H, Cheng JJ (2008) N-trimethylsilyl amines for controlled ring-opening polymerization of amino acid N-carboxyanhydrides and facile end group functionalization of polypeptides. J Am Chem Soc 130(38):12562. doi:10.1021/ja803304x

    CAS  Google Scholar 

  165. Yin Q, Tong R, Xu YX, Baek K, Dobrucki LW, Fan TM, Cheng JJ (2013) Drug-initiated ring-opening polymerization of O-carboxyanhydrides for the preparation of anticancer drug-poly(O-carboxyanhydride) nanoconjugates. Biomacromolecules 14(3):920–929. doi:10.1021/bm301999c

    CAS  Google Scholar 

  166. Schlaad, H. (2006) Solution properties of polypeptide-based copolymers. In: Klok HA, Schlaad H (eds). Peptide hybrid polymers, 202, pp 53–73

  167. Bilek L, Derkosch J, Michl H, Wessely F (1953) *Uber die zersetzung von alpha-amino-n-carbonsaureanhydriden mit pyridin und pyridinderivaten - Zur frage der bildung von hohermolekularen cyklopeptiden. Monatshefte Fur Chemie 84(4):717–740. doi:10.1007/bf00902771

    CAS  Google Scholar 

  168. Deming, T. J. (2006) Polypeptide and polypeptide hybrid copolymer synthesis via NCA polymerization. In: Klok HA, Schlaad H (eds) Peptide hybrid polymers, 202, pp 1–18

  169. Habraken GJM, Heise A, Thornton PD (2012) Block copolypeptides prepared by N-carboxyanhydride ring-opening polymerization. Macromol Rapid Commun 33(4):272–286. doi:10.1002/marc.201100730

    CAS  Google Scholar 

  170. Oya M, Uno K, Iwakura Y (1970) Polymerization of alpha-amino acid N-carboxy anhydride (4-alkyl-oxazolidine-dione). 4. A novel synthesis of a block copolypeptide. Bull Chem Soc Jpn 43(6):1788

    CAS  Google Scholar 

  171. He SJ, Lee C, Gido SP, Yu SJM, Tirrell DA (1998) A twist grain boundary-like twisted smectic phase in monodisperse poly(gamma-benzyl alpha, L-glutamate) produced by recombinant DNA techniques. Macromolecules 31(26):9387–9389. doi:10.1021/ma981286j

    CAS  Google Scholar 

  172. Zhang GH, Fournier MJ, Mason TL, Tirrell DA (1992) Biological synthesis of monodisperse derivatives of poly(alpha, L-glutamic acid)—model rodlike polymers. Macromolecules 25(13):3601–3603. doi:10.1021/ma00039a048

    CAS  Google Scholar 

  173. Obeid R, Scholz C (2011) Synthesis and self-assembly of well-defined poly(amino acid) end-capped poly(ethylene glycol) and poly(2-methyl-2-oxazoline). Biomacromolecules 12(10):3797–3804. doi:10.1021/bm201048x

    CAS  Google Scholar 

  174. Balik CM, Hopfinger AJ (1978) Quantization of the solvent effect on the adsorption of poly-γ-benzyl-L-glutamate. J Colloid Interface Sci 67(1):118–126. doi:10.1016/0021-9797(78)90219-9

    CAS  Google Scholar 

  175. Zheng WW, Frank CW (2010) Surface-Initiated Vapor Deposition Polymerization of Poly (gamma-benzyl-L-glutamate): Optimization and Mechanistic Studies. Langmuir 26(6):3929–3941. doi:10.1021/la9032628

    CAS  Google Scholar 

  176. Wieringa RH, Siesling EA, Werkman PJ, Vorenkamp EJ, Schouten AJ (2001) Surface grafting of poly(L-glutamates). 3. Block copolymerization. Langmuir 17(21):6491–6495. doi:10.1021/la001771j

    CAS  Google Scholar 

  177. Ray JG, Johnson AJ, Savin DA (2013) Self-assembly and responsiveness of polypeptide-based block copolymers: how “smart” behavior and topological complexity yield unique assembly in aqueous media. J Polym Sci, Part B: Polym Phys 51(7):508–523. doi:10.1002/polb.23259

    CAS  Google Scholar 

  178. Richtering W, Gan D, Lyon LA (2006) Amphiphilic, peptide-modified core/shell microgels. In: Smart colloidal materials. Springer, Berlin, pp 1–8

    Google Scholar 

  179. Wang XL, Daly WH, Russo P, Ngu-Schwemlein M (2001) Synthesis of paucidisperse poly(gamma-benzyl-alpha, L-glutamate) oligomers and star polymers with rigid arms. Biomacromolecules 2(4):1214–1219. doi:10.1021/bm015569m

    CAS  Google Scholar 

  180. Fong B, Turksen S, Russo PS, Stryjewski W (2004) Colloidal crystals of silica-homopolypeptide composite particles. Langmuir 20(1):266–269. doi:10.1021/la034762u

    CAS  Google Scholar 

  181. Phan SE, Russel WB, Zhu JX, Chaikin PM (1998) Effects of polydispersity on hard sphere crystals. J Chem Phys 108(23):9789–9795. doi:10.1063/1.476453

    CAS  Google Scholar 

  182. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem-Int Edit 40(11):2004. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.3.co;2-x

    CAS  Google Scholar 

  183. Golas PL, Matyjaszewski K (2007) Click chemistry and ATRP: a beneficial union for the preparation of functional materials. QSAR Comb Sci 26(11–12):1116–1134. doi:10.1002/qsar.200740059

    CAS  Google Scholar 

  184. Li NW, Binder WH (2010) Click-chemistry for nanoparticle-modification. J Mater Chem 21(42):16717–16734. doi:10.1039/c1jm11558h

    Google Scholar 

  185. Tang HY, Zhang DH (2011) Multi-functionalization of helical block copoly(alpha-peptide)s by orthogonal chemistry. Polym Chem 2(7):1542–1551. doi:10.1039/c1py00015b

    CAS  Google Scholar 

  186. Agut W, Agnaou R, Lecommandoux S, Taton D (2008) Synthesis of block copolypeptides by click chemistry. Macromol Rapid Commun 29(12–13):1147–1155. doi:10.1002/marc.200800123

    CAS  Google Scholar 

  187. Ranjan R, Brittain WJ (2007) Tandem RAFT polymerization and click chemistry: an efficient approach to surface modification. Macromol Rapid Commun 28(21):2084–2089. doi:10.1002/marc.200700428

    CAS  Google Scholar 

  188. Balamurugan SS, Soto-Cantu E, Cueto R, Russo PS (2010) Preparation of organosoluble silica-polypeptide particles by “click” chemistry. Macromolecules 43(1):62–70. doi:10.1021/ma901840n

    CAS  Google Scholar 

  189. Kar M, Pauline M, Sharma K, Kumaraswamy G, Sen Gupta S (2011) Synthesis of poly-L-glutamic acid grafted silica nanoparticles and their assembly into macroporous structures. Langmuir 27(19):12124–12133. doi:10.1021/la202036c

    CAS  Google Scholar 

  190. Kar M, Vijayakumar PS, Prasad BLV, Sen Gupta S (2010) Synthesis and characterization of poly-L-lysine-grafted silica nanoparticles synthesized via NCA polymerization and click chemistry. Langmuir 26(8):5772–5781. doi:10.1021/la903595x

    CAS  Google Scholar 

  191. Kar M, Tiwari N, Tiwari M, Lahiri M, Sen Gupta S (2013) Poly-L-arginine grafted silica mesoporous nanoparticles for enhanced cellular uptake and their application in DNA delivery and controlled drug release. Part Part Syst Char 30(2):166–179. doi:10.1002/ppsc.201200089

    CAS  Google Scholar 

  192. Wittig G, Krebs A (1961) Zur existenz niedergliedriger cycloalkine.1. Chemische Berichte-Recueil 94(12):3260–3275. doi:10.1002/cber.19610941213

    CAS  Google Scholar 

  193. Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV (2005) Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J Am Chem Soc 127(1):210–216. doi:10.1021/ja0471525

    CAS  Google Scholar 

  194. Jewett JC, Bertozzi CR (2010) Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev 39(4):1272–1279

    CAS  Google Scholar 

  195. Lin Y–C, Kuo S-W (2012) Hierarchical self-assembly and secondary structures of linear polypeptides graft onto POSS in the side chain through click chemistry. Polym Chem 3(1):162–171

    CAS  Google Scholar 

  196. Wieringa RH, Siesling EA, Geurts PFM, Werkman PJ, Vorenkamp EJ, Erb V, Stamm M, Schouten AJ (2001) Surface grafting of poly (L-glutamates). 1. Synthesis and characterization. Langmuir 17(21):6477–6484. doi:10.1021/la001769s

    CAS  Google Scholar 

  197. Luijten J, Groeneveld DY, Nijboer GW, Vorenkamp EJ, Schouten AJ (2007) Cross-linking-induced permanently perpendicular helix orientation in surface-grafted polyglutamate films. Langmuir 23(15):8163–8169. doi:10.1021/1a7005106

    CAS  Google Scholar 

  198. Wieringa RH, Schouten AJ (1996) Oriented thin film formation by surface graft polymerization of gamma-methyl L-glutamate N-carboxyanhydride in the melt. Macromolecules 29(8):3032–3034. doi:10.1021/ma9508358

    CAS  Google Scholar 

  199. Chang, Y. C.; Frank, C. W. (1998) Chemical grafting of poly(L-glutamate) gamma-esters on silicon (100) surfaces by vapor polymerization of N-carboxy anhydride monomers. In: Frank CW (ed) Organic thin films: structure and applications, 695, pp 142–157

  200. Soto-Cantu E, Turksen-Selcuk S, Qiu JH, Zhou Z, Russo PS, Henk MC (2011) Silica-polypeptide composite particles: controlling shell growth. Langmuir 26(19):15604–15613. doi:10.1021/la1023955

    Google Scholar 

  201. Wyatt PJ (1970) Cell wall thickness, size distribution, refractive index ratio and dry weight content of living bacteria (Staphylococcus aureus). Nature 226(5242):277. doi:10.1038/226277a0

    CAS  Google Scholar 

  202. Bu MQ, Melvin T, Ensell GJ, Wilkinson JS, Evans AGR (2004) A new masking technology for deep glass etching and its microfluidic application. Sensor Actuat A-Phys 115(2–3):476–482. doi:10.1016/j.sna.2003.12.013

    CAS  Google Scholar 

  203. Fasman GD, Idelson M, Blout ER (1961) Synthesis and conformation of high molecular weight poly-epsilon-carbobenzyloxy-L-lysine and poly-L-lysine.HCl. J Am Chem Soc 83(3):709

    CAS  Google Scholar 

  204. Liu D, Li Y, Deng JP, Yang WT (2011) Synthesis and characterization of magnetic Fe3O4-silica-poly(gamma-benzyl-L-glutamate) composite microspheres. React Funct Polym 71(10):1040–1044. doi:10.1016/j.reactfunctpolym.2011.07.009

    CAS  Google Scholar 

  205. Ostlund SG, Striegel AM (2008) Ultrasonic degradation of poly(gamma-benzyl-L-glutamate), an archetypal highly extended polymer. Polym Degrad Stabil 93(8):1510–1514. doi:10.1016/j.Polymdegradstab.2008.05.012

    CAS  Google Scholar 

  206. Xu Z, Feng Y, Liu X, Guan M, Zhao C, Zhang H (2010) Synthesis and characterization of Fe3O4@SiO2@poly-l-alanine, peptide brush magnetic microspheres through NCA chemistry for drug delivery and enrichment of BSA. Colloids Surf B 81(2):503–507. doi:10.1016/j.colsurfb.2010.07.048

    CAS  Google Scholar 

  207. Johnston APR, Cortez C, Angelatos AS, Caruso F (2006) Layer-by-layer engineered capsules and their applications. Curr Opin Colloid Interface Sci 11(4):203–209. doi:10.1016/j.cocis.2006.05.001

    CAS  Google Scholar 

  208. Becker AL, Johnston APR, Caruso F (2010) Layer-by-layer-assembled capsules and films for therapeutic delivery. Small 6(17):1836–1852. doi:10.1002/smll.201000379

    CAS  Google Scholar 

  209. Wiedeman MP (1963) Dimensions of blood vessels from distributing artery to collecting vein. Circ Res 12(4):375

    CAS  Google Scholar 

  210. Zelikin AN, Li Q, Caruso F (2008) Disulfide-stabilized poly(methacrylic acid) capsules: formation, cross-linking, and degradation behavior. Chem Mat 20(8):2655–2661. doi:10.1021/cm703403p

    CAS  Google Scholar 

  211. Johnston APR, Zelikin AN, Caruso F (2007) Assembling DNA into advanced materials: from nanostructured films to biosensing and delivery systems. Adv Mater 19(21):3727–3730. doi:10.1002/adma.200701147

    CAS  Google Scholar 

  212. Yan Y, Ochs CJ, Such GK, Heath JK, Nice EC, Caruso F (2010) Bypassing multidrug resistance in cancer cells with biodegradable polymer capsules. Adv Mater 22(47):5398. doi:10.1002/adma.201003162

    CAS  Google Scholar 

  213. Hosta-Rigau L, Stadler B, Yan Y, Nice EC, Heath JK, Albericio F, Caruso F (2010) Capsosomes with multilayered subcompartments: assembly and loading with hydrophobic cargo. Adv Funct Mater 20(1):59–66. doi:10.1002/adfm.200901297

    CAS  Google Scholar 

  214. Chandrawati R, van Koeverden MP, Lomas H, Caruso F (2011) Multicompartment particle assemblies for bioinspired encapsulated reactions. J Phys Chem Lett 2(20):2639–2649. doi:10.1021/jz200994n

    CAS  Google Scholar 

  215. Chang DHC, Johnston APR, Wark KL, Breheney K, Caruso F (2012) Engineered bacterially expressed polypeptides: assembly into polymer particles with tailored degradation profiles. Angew Chem-Int Edit 51(2):460–464. doi:10.1002/anie.201106033

    CAS  Google Scholar 

  216. Peabody DS, Manifold-Wheeler B, Medford A, Jordan SK, do Carmo Caldeira J, Chackerian B (2008) Immunogenic display of diverse peptides on virus-like particles of RNA phage MS2. J Mol Biol 380(1):252–263

    CAS  Google Scholar 

  217. McPherson A (2005) Micelle formation and crystallization as paradigms for virus assembly. Bioessays 27(4):447–458. doi:10.1002/bies.20196

    CAS  Google Scholar 

  218. Marcelo G, Munoz-Bonilla A, Fernandez-Garcia M (2012) Magnetite-polypeptide hybrid materials decorated with gold nanoparticles: study of their catalytic activity in 4-nitrophenol reduction. J Phys Chem C 116(46):24717–24725. doi:10.1021/jp309145r

    CAS  Google Scholar 

  219. Marcelo G, Munoz-Bonilla A, Rodriguez-Hernandez J, Fernandez-Garcia M (2013) Hybrid materials achieved by polypeptide grafted magnetite nanoparticles through a dopamine biomimetic surface anchored initiator. Polym Chem 4(3):558–567. doi:10.1039/c2py20514a

    CAS  Google Scholar 

  220. Borase T, Ninjbadgar T, Kapetanakis A, Roche S, O’Connor R, Kerskens C, Heise A, Brougham DF (2013) Stable aqueous dispersions of glycopeptide-grafted selectably functionalized magnetic nanoparticles. Angew Chem Int Edit 52(11):3164–3167. doi:10.1002/anie.201208099

    CAS  Google Scholar 

  221. Maccarrone S, Brambilla G, Pravaz O, Duri A, Ciccotti M, Fromental JM, Pashkovski E, Lips A, Sessoms D, Trappe V, Cipelletti L (2010) Ultra-long range correlations of the dynamics of jammed soft matter. Soft Matter 6(21):5514–5522. doi:10.1039/c0sm00155d

    CAS  Google Scholar 

  222. Coniglio A, Abete T, de Candia A, Del Gado E, Fierro A (2008) Dynamical heterogeneities: from glasses to gels. J. Phys.: Condens. Matter, 20:494239

    Google Scholar 

  223. Siebenburger M, Fuchs M, Ballauff M (2012) Core–shell microgels as model colloids for rheological studies. Soft Matter 8(15):4014–4024. doi:10.1039/c2sm07011a

    Google Scholar 

  224. Lhuillier D, Nadim A (2010) Rheology of suspensions of mass-polarized particles in a gravitational field. Chem Eng Commun 197(1):76–91. doi:10.1080/00986440903070742

    CAS  Google Scholar 

  225. de Folter JWJ, de Villeneuve VWA, Aarts D, Lekkerkerker HNW (2010) Rigid sphere transport through a colloidal gas–liquid interface. New J. Phys., 12:023013

    Google Scholar 

  226. Finsy R, Moreels E, Bottger A, Lekkerkerker H (1985) Study of the relation between diffusion and sedimentation of charged silica sols by dynamic light-scattering, ultracentrifugation, and turbidimetry. J Chem Phys 82(8):3812–3816

    CAS  Google Scholar 

  227. Almenar L, Rauscher M (2011) Dynamics of colloids in confined geometries. J Phys Condens Matter 23(18):184115

    CAS  Google Scholar 

  228. Tracy MA, Garcia JL, Pecora R (1993) An investigation of the microstructure of a rod sphere composite liquid. Macromolecules 26(8):1862–1868. doi:10.1021/ma00060a011

    CAS  Google Scholar 

  229. Pawsey AC, Lintuvuori JS, Wood TA, Thijssen JHJ, Marenduzzo D, Clegg PS (2012) Colloidal particles at the interface between an isotropic liquid and a chiral liquid crystal. Soft Matter 8(32):8422–8428. doi:10.1039/c2sm25434d

    CAS  Google Scholar 

  230. Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285. doi:10.1146/annurev.bb.23.060194.001335

    CAS  Google Scholar 

  231. Gutsche C, Elmahdy MM, Kegler K, Semenov I, Stangner T, Otto O, Ueberschar O, Keyser UF, Krueger M, Rauscher M, Weeber R, Harting J, Kim YW, Lobaskin V, Netz RR, Kremer F (2011) Micro-rheology on (polymer-grafted) colloids using optical tweezers. J. Phys.: Condens. Matter, 23:184114

    Google Scholar 

  232. Castelain M, Rouxhet PG, Pignon F, Magnin A, Piau JM (2012) Single-cell adhesion probed in-situ using optical tweezers: a case study with Saccharomyces cerevisiae. J. Appl. Phys., 111(11)

  233. Hegge S, Uhrig K, Streichfuss M, Kynast-Wolf G, Matuschewski K, Spatz JP, Frischknecht F (2012) Direct manipulation of malaria parasites with optical tweezers reveals distinct functions of plasmodium surface proteins. ACS Nano 6(6):4648–4662. doi:10.1021/nn203616u

    CAS  Google Scholar 

  234. Sanson C, Le Meins JF, Schatz C, Soum A, Lecommandoux S (2010) Temperature responsive poly(trimethylene carbonate)-block-poly(L-glutamic acid) copolymer: polymersomes fusion and fission. Soft Matter 6(8):1722–1730. doi:10.1039/b924617g

    CAS  Google Scholar 

  235. Sanson C, Schatz C, Le Meins JF, Brulet A, Soum A, Lecommandoux S (2010) Biocompatible and biodegradable poly(trimethylene carbonate)-b-poly (L-glutamic acid) polymersomes: size control and stability. Langmuir 26(4):2751–2760. doi:10.1021/la902786t

    CAS  Google Scholar 

  236. Sanson C, Diou O, Thevenot J, Ibarboure E, Soum A, Brulet A, Miraux S, Thiaudiere E, Tan S, Brisson A, Dupuis V, Sandre O, Lecommandoux S (2011) Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5(2):1122–1140. doi:10.1021/nn102762f

    CAS  Google Scholar 

  237. Huang J, Bonduelle C, Thevenot J, Lecommandoux S, Heise A (2012) Biologically active polymersomes from amphiphilic glycopeptides. J Am Chem Soc 134(1):119–122. doi:10.1021/ja209676p

    CAS  Google Scholar 

  238. Lau KHA, Duran H, Knoll W (2009) In situ characterization of N-carboxy anhydride polymerization in nanoporous anodic alumina. J Phys Chem B 113(10):3179–3189. doi:10.1021/jp809593d

    CAS  Google Scholar 

  239. Chandrawati R, Hosta-Rigau L, Vanderstraaten D, Lokuliyana SA, Stadler B, Albericio F, Caruso F (2010) Engineering advanced capsosomes: maximizing the number of subcompartments, cargo retention, and temperature-triggered reaction. ACS Nano 4(3):1351–1361. doi:10.1021/nn901843j

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Science Foundation (Grant No 1005707 and Grant No 1306262) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul S. Russo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosu, C., Selcuk, S., Soto-Cantu, E. et al. Progress in silica polypeptide composite colloidal hybrids: from silica cores to fuzzy shells. Colloid Polym Sci 292, 1009–1040 (2014). https://doi.org/10.1007/s00396-014-3170-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3170-7

Keywords

Navigation