Skip to main content

Advertisement

Log in

A review on tough and sticky hydrogels

  • Invited Review
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this review, we survey recent literature (2009–2013) on hydrogels that are mechanically tough and adhesive. The impact of published work and trends in the field are examined. We focus on design concepts, new materials, structures related to mechanical performance and adhesion properties. Besides hydrogels made of individual polymers, concepts developed to toughen hydrogels include interpenetrating and double networks, slide ring polymer gels, topological hydrogels, ionically cross-linked copolymer gels, nanocomposite polymer hydrogels, self-assembled microcomposite hydrogels, and combinations thereof. Hydrogels that are adhesive in addition to tough are also discussed. Adhesive properties, especially wet adhesion of hydrogels, are rare but needed for a variety of general technologies. Some of the most promising industrial applications are found in the areas of sensor and actuator technology, microfluidics, drug delivery and biomedical devices. The most recent accomplishments and creative approaches to making tough and sticky hydrogels are highlighted. This review concludes with perspectives for future directions, challenges and opportunities in a continuously changing world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Malmsten M (2011) Antimicrobial and antiviral hydrogels. Soft Matter 7:8725–8736

    Article  CAS  Google Scholar 

  2. Naficy S, Brown HR, Razal JM, Spinks GM, Whitten PG (2011) Progress toward robust polymer hydrogels. Aust J Chem 64:1007–1025

    Article  CAS  Google Scholar 

  3. Messing R, Schmidt AM (2011) Perspectives for the mechanical manipulation of hybrid hydrogels. Polym Chem 2:18–32

    Article  CAS  Google Scholar 

  4. Calvert P (2009) Hydrogels for soft machines. Adv Mater 21:743–756

    Article  CAS  Google Scholar 

  5. D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, vol. 404, p. 588, Apr 6 2000.

  6. Dong XL, Wu RA, Dong J, Wu MH, Zhu Y, Zou HF (2009) Recent progress of polar stationary phases in CEC and capillary liquid chromatography. Electrophoresis 30:141–154

    Article  CAS  Google Scholar 

  7. Hempenius MA, Cirmi C, Lo Savio F, Song J, Vancso GJ (2010) Poly(ferrocenylsilane) gels and hydrogels with redox-controlled actuation. Macromol Rapid Commun 31:772–783

    Article  CAS  Google Scholar 

  8. G. Y. Huang, L. H. Zhou, Q. C. Zhang, Y. M. Chen, W. Sun, F. Xu, and T. J. Lu, Microfluidic hydrogels for tissue engineering, Biofabrication, vol. 3, Mar 2011.

  9. Allazetta S, Cosson S, Lutolf MP (2011) Programmable microfluidic patterning of protein gradients on hydrogels. Chem Commun 47:191–193

    Article  CAS  Google Scholar 

  10. Schneider HJ, Kato K, Strongin RM (2007) Chemomechanical polymers as sensors and actuators for biological and medicinal applications. Sensors 7:1578–1611

    Article  CAS  Google Scholar 

  11. Texter J (2009) Templating hydrogels. Colloid Polym Sci 287:313–321

    Article  CAS  Google Scholar 

  12. Kuckling D (2009) Responsive hydrogel layers—from synthesis to applications. Colloid Polym Sci 287:881–891

    Article  CAS  Google Scholar 

  13. Kim P, Zarzar LD, He XM, Grinthal A, Aizenberg J (2011) Hydrogel-actuated integrated responsive systems (HAIRS): moving towards adaptive materials. Curr Opin Solid State Mater Sci 15:236–245

    Article  CAS  Google Scholar 

  14. Artzi N, Zeiger A, Boehning F, Ramos AB, van Vliet K, Edelman ER (2011) Tuning adhesion failure strength for tissue-specific applications. Acta Biomaterialia 7:67–74

    Article  CAS  Google Scholar 

  15. Duarte AP, Coelho JF, Bordado JC, Cidade MT, Gil MH (2012) Surgical adhesives: systematic review of the main types and development forecast. Prog Polym Sci 37:1031–1050

    Article  CAS  Google Scholar 

  16. A. Matsumoto, R. Yoshida, and K. Kataoka, Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH, Biomacromolecules, vol. 5, pp. 1038–1045, May–Jun 2004.

  17. Thomas PC, Cipriano BH, Raghavan SR (2011) Nanoparticle-crosslinked hydrogels as a class of efficient materials for separation and ion exchange. Soft Matter 7:8192–8197

    Article  CAS  Google Scholar 

  18. Myung D, Farooqui N, Zheng LL, Koh W, Gupta S, Bakri A, Noolandi J, Cochran JR, Frank CW, Ta CN (2009) Bioactive interpenetrating polymer network hydrogels that support corneal epithelial wound healing. J Biomed Mater Res Part A 90A:70–81

    Article  CAS  Google Scholar 

  19. Huynh CT, Nguyen MK, Lee DS (2011) Injectable block copolymer hydrogels: achievements and future challenges for biomedical applications. Macromolecules 44:6629–6636

    Article  CAS  Google Scholar 

  20. Petrie EM (2007) Theories of adhesion. In: Patrie EM (ed) Handbook of adhesives and sealants. McGraw-Hill, New York

    Google Scholar 

  21. Pizzi A, Mittal KL (1994) Handbook of adhesive technology. Marcel Dekker Inc., New York

    Google Scholar 

  22. Pocius AV (2002) Adhesion and adhesive technology. An introduction. Carl Hanser Verlag, Munich

    Google Scholar 

  23. Fitton MD, Broughton IG (2005) Variable modulus adhesives: an approach to optimised joint performance. Int J Adhes Adhes 25:329–336

    Article  CAS  Google Scholar 

  24. Davies ML, Murphy SM, Hamilton CJ, Tighe BJ (1992) Polymer membranes in clinical sensor applications: 3. Hydrogels as reactive matrix membranes in fiber optic sensors. Biomaterials 13:991–999

    Article  CAS  Google Scholar 

  25. Petersen S, Gattermayer M, Biesalski M (2011) Hold on at the right spot: bioactive surfaces for the design of live-cell micropatterns. Bioactive Surfaces 240:35–78

    Article  CAS  Google Scholar 

  26. Lin CC, Anseth KS (2009) PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res 26:631–643

    Article  CAS  Google Scholar 

  27. Park K, Shalaby SWS, Park H (1993) Biodegradable Hydrogels for Drug Delivery. Technomic Publishing, Lancaster, PA

    Google Scholar 

  28. S. Chaterji, I. K. Kwon, and K. Park, Smart polymeric gels: redefining the limits of biomedical devices, Progress in Polymer Science, vol. 32, pp. 1083–1122, Aug–Sep 2007.

  29. Bird SP, Baker LA (2011) Biologically modified hydrogels for chemical and biochemical analysis. Analyst 136:3410–3418

    Article  CAS  Google Scholar 

  30. Bait N, Grassl B, Derail C, Benaboura A (2011) Hydrogel nanocomposites as pressure-sensitive adhesives for skin-contact applications. Soft Matter 7:2025–2032

    Article  CAS  Google Scholar 

  31. Peng HT, Shek PN (2010) Novel wound sealants: biomaterials and applications. Expert Rev Med Devices 7:639–659

    Article  CAS  Google Scholar 

  32. Shazly TM, Baker AB, Naber JR, Bon A, Van Vliet KJ, Edelman ER (2010) Augmentation of postswelling surgical sealant potential of adhesive hydrogels. J Biomed Mater Res Part A 95A:1159–1169

    Article  CAS  Google Scholar 

  33. Brubaker CE, Messersmith PB (2011) Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 12:4326–4334

    Article  CAS  Google Scholar 

  34. Dolgin E (2013) The sticking point. Nat Med 19:124–125

    Article  CAS  Google Scholar 

  35. Haque MA, Kurokawa T, Gong JP (2012) Super tough double network hydrogels and their application as biomaterials. Polymer 53:1805–1822

    Article  CAS  Google Scholar 

  36. Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487

    Article  CAS  Google Scholar 

  37. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung UI (2008) Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41:5379–5384

    Article  CAS  Google Scholar 

  38. Henderson KJ, Zhou TC, Otim KJ, Shull KR (2010) Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 43:6193–6201

    Article  CAS  Google Scholar 

  39. K. Haraguchi and T. Takehisa, Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties, Advanced Materials, vol. 14, pp. 1120–1124, AUG 16 2002.

  40. Schexnailder PJ, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11

    Article  CAS  Google Scholar 

  41. Shibayama M (2012) Structure–mechanical property relationship of tough hydrogels. Soft Matter 8:8030–8038

    Article  CAS  Google Scholar 

  42. Schexnailder P, Loizou E, Porcar L, Butler P, Schmidt G (2009) Heterogeneity in nanocomposite hydrogels from poly(ethylene oxide) cross-linked with silicate nanoparticles. Phys Chem Chem Phys 11:2760–2766

    Article  CAS  Google Scholar 

  43. Myung D, Waters D, Wiseman M, Duhamel PE, Noolandi J, Ta CN, Frank CW (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657

    Article  CAS  Google Scholar 

  44. Kopecek J (2009) Hydrogels: from soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci Part a-Polym Chem 47:5929–5946

    Article  CAS  Google Scholar 

  45. Fisher OZ, Khademhosseini A, Langer R, Peppas NA (2010) Bioinspired materials for controlling stem cell fate. Acc Chem Res 43:419–428

    Article  CAS  Google Scholar 

  46. Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678–1719

    Article  CAS  Google Scholar 

  47. Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408

    Article  CAS  Google Scholar 

  48. Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13–22

    Article  CAS  Google Scholar 

  49. J. Patterson, M. M. Martino, and J. A. Hubbell, Biomimetic materials in tissue engineering, Materials Today, vol. 13, pp. 14–22, Jan–Feb 2010.

  50. Stevens MM, Khademhosseini A (2010) Emerging materials for tissue engineering and regenerative medicine: themed issue for Soft Matter and Journal of Materials Chemistry. Soft Matter 6:4962–4962

    Article  CAS  Google Scholar 

  51. Kloxin AM, Lewis KJR, DeForest CA, Seedorf G, Tibbitt MW, Balasubramaniam V, Anseth KS (2012) Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D. Integr Biol 4:1540–1549

    Article  CAS  Google Scholar 

  52. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158

    Article  CAS  Google Scholar 

  53. Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6:2583–2590

    Article  CAS  Google Scholar 

  54. Brown HR (2007) A model of the fracture of double network gels. Macromolecules 40:3815–3818

    Article  CAS  Google Scholar 

  55. Webber RE, Creton C, Brown HR, Gong JP (2007) Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules 40:2919–2927

    Article  CAS  Google Scholar 

  56. Y. Tanaka, A local damage model for anomalous high toughness of double-network gels, Epl, vol. 78, 2007.

  57. L. Mullins and N. R. Tobin, Stress softening in rubber vulcanizates: I. Use of a strain amplification factor to describe elastic behavior of filler-reinforced vulcanized rubber, Journal of Applied Polymer Science, vol. 9, pp. 2993–, 1965.

  58. Ito K (2012) Novel entropic elasticity of polymeric materials: why is slide-ring gel so soft? Polym J 44:38–41

    Article  CAS  Google Scholar 

  59. Tirumala VR, Tominaga T, Lee S, Butler PD, Lin EK, Gong JP, Wu WL (2008) Molecular model for toughening in double-network hydrogels. J Phys Chem B 112:8024–8031

    Article  CAS  Google Scholar 

  60. Baumberger T, Caroli C, Martina D (2006) Solvent control of crack dynamics in a reversible hydrogel. Nat Mater 5:552–555

    Article  CAS  Google Scholar 

  61. Okumura K (2004) Toughness of double elastic networks. Europhys Lett 67:470–476

    Article  CAS  Google Scholar 

  62. Kishi R, Hiroki K, Tominaga T, Sano KI, Okuzaki H, Martinez JG, Otero TF, Osada Y (2012) Electro-conductive double-network hydrogels. J Polymer Sci, Part B: Polymer Phys 50:790–796

    Article  CAS  Google Scholar 

  63. Cui J, Lackey MA, Madkour AE, Saffer EM, Griffin DM, Bhatia SR, Crosby AJ, Tew GN (2012) Synthetically simple, highly resilient hydrogels. Biomacromolecules 13:584–588

    Article  CAS  Google Scholar 

  64. Cui J, Lackey MA, Tew GN, Crosby AJ (2012) Mechanical properties of end-linked PEG/PDMS hydrogels. Macromolecules 45:6104–6110

    Article  CAS  Google Scholar 

  65. Zhang XY, Guo XL, Yang SG, Tan SX, Li XF, Dai HJ, Yu XL, Zhang XL, Weng N, Jian B, Xu J (2009) Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers. J Appl Polym Sci 112:3063–3070

    Article  CAS  Google Scholar 

  66. Harrass K, Kruger R, Moller M, Albrecht K, Groll J (2013) Mechanically strong hydrogels with reversible behaviour under cyclic compression with MPa loading. Soft Matter 9:2869–2877

    Article  CAS  Google Scholar 

  67. Rakovsky A, Marbach D, Lotan N, Lanir Y (2009) Poly(ethylene glycol)-based hydrogels as cartilage substitutes: synthesis and mechanical characteristics. J Appl Polym Sci 112:390–401

    Article  CAS  Google Scholar 

  68. Brigham MD, Bick A, Lo E, Bendali A, Burdick JA, Khademhosseini A (2009) Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng Part A 15:1645–1653

    Article  CAS  Google Scholar 

  69. Liu YX, Chan-Park MB (2009) Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials 30:196–207

    Article  CAS  Google Scholar 

  70. DeKosky BJ, Dormer NH, Ingavle GC, Roatch CH, Lomakin J, Detamore MS, Gehrke SH (2010) Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. Tissue Eng Part C-Methods 16:1533–1542

    Article  CAS  Google Scholar 

  71. Chan BK, Wippich CC, Wu CJ, Sivasankar PM, Schmidt G (2012) Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds. Macromol Biosci 12:1490–1501

    Article  CAS  Google Scholar 

  72. Wang XZ, Wang HL, Brown HR (2011) Jellyfish gel and its hybrid hydrogels with high mechanical strength. Soft Matter 7:211–219

    Article  CAS  Google Scholar 

  73. Shull KR (2012) Materials science: a hard concept in soft matter. Nature 489:36–37

    Article  CAS  Google Scholar 

  74. Sun JY, Zhao XH, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo ZG (2012) Highly stretchable and tough hydrogels. Nature 489:133–136

    Article  CAS  Google Scholar 

  75. Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44:4997–5005

    Article  CAS  Google Scholar 

  76. P. Manandhar, P. D. Calvert, and J. R. Buck, Elastomeric ionic hydrogel sensor for large strains, IEEE Sensors Journal, vol. 12, Jun 2012.

  77. Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463:339–343

    Article  CAS  Google Scholar 

  78. Lin HR, Ling MH, Lin YJ (2009) High strength and low friction of a PAA–alginate–silica hydrogel as potential material for artificial soft tissues. J Biomater Sci Polym Ed 20:637–652

    Article  CAS  Google Scholar 

  79. D. W. Thompson and J. T. Butterworth, The nature of laponite and its aqueous dispersions, Journal of Colloid and Interface Science, vol. 151, pp. 236–243, JUN 1992.

  80. H. Tanaka, S. Jabbari-Farouji, J. Meunier, and D. Bonn, Kinetics of ergodic-to-nonergodic transitions in charged colloidal suspensions: Aging and gelation, Physical Review E, vol. 71, Feb 2005.

  81. H. Tanaka, J. Meunier, and D. Bonn, Nonergodic states of charged colloidal suspensions: repulsive and attractive glasses and gels, Physical Review E, vol. 69, Mar 2004.

  82. Haraguchi K (2011) Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym J 43:223–241

    Article  CAS  Google Scholar 

  83. T. Nishida, H. Endo, N. Osaka, H. Li, K. Haraguchi, and M. Shibayama, Deformation mechanism of nanocomposite gels studied by contrast variation small-angle neutron scattering, Physical Review E, vol. 80, Sep 2009.

  84. Ren HY, Zhu MF, Haraguchi K (2012) Effects of counter ions of clay platelets on the swelling behavior of nanocomposite gels. J Colloid Interface Sci 375:134–141

    Article  CAS  Google Scholar 

  85. H. Furukawa, K. Horie, R. Nozaki, and M. Okada, Swelling-induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scattering, Physical Review E, vol. 68, Sep 2003.

  86. Wu CJ, Gaharwar AK, Chan BK, Schmidt G (2011) Mechanically tough pluronic F127/Laponite nanocomposite hydrogels from covalently and physically cross-linked Networks. Macromolecules 44:8215–8224

    Article  CAS  Google Scholar 

  87. Gaharwar AK, Rivera CP, Wu CJ, Schmidt G (2011) Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater 7:4139–4148

    Article  CAS  Google Scholar 

  88. Wu C-J, Wilker JJ, Schmidt G (2013) Robust and adhesive hydrogels from cross-linked poly(ethylene glycol) and silicate for biomedical use. Macromol Biosci 13:59–66

    Article  CAS  Google Scholar 

  89. Gaharwar AK, Dammu SA, Canter JM, Wu CJ, Schmidt G (2011) Highly Extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules 12:1641–1650

    Article  CAS  Google Scholar 

  90. Lin WC, Marcellan A, Hourdet D, Creton C (2011) Effect of polymer–particle interaction on the fracture toughness of silica filled hydrogels. Soft Matter 7:6578–6582

    Article  CAS  Google Scholar 

  91. G. J. Lake and A. G. Thomas, Strength of highly elastic materials, Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, vol. 300, pp. 108–, 1967.

  92. Wang Q, Hou RX, Cheng YJ, Fu J (2012) Super-tough double-network hydrogels reinforced by covalently compositing with silica-nanoparticles. Soft Matter 8:6048–6056

    Article  CAS  Google Scholar 

  93. Liu JQ, Chen CF, He CC, Zhao L, Yang XJ, Wang HL (2012) Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. ACS Nano 6:8194–8202

    Article  CAS  Google Scholar 

  94. Qin XP, Zhao F, Liu YK, Wang HY, Feng SY (2009) High mechanical strength hydrogels preparation using hydrophilic reactive microgels as crosslinking agents. Colloid Polym Sci 287:621–625

    Article  CAS  Google Scholar 

  95. T. Huang, H. G. Xu, K. X. Jiao, L. P. Zhu, H. R. Brown, and H. L. Wang, A novel hydrogel with high mechanical strength: A macromolecular microsphere composite hydrogel, Advanced Materials, vol. 19, pp. 1622–, Jun 18 2007.

  96. Xia LW, Ju XJ, Liu JJ, Xie R, Chu LY (2010) Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks. J Colloid Interface Sci 349:106–113

    Article  CAS  Google Scholar 

  97. Xu K, Tan Y, Chen Q, An HY, Li WB, Dong LS, Wang PX (2010) A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate. J Colloid Interface Sci 345:360–368

    Article  CAS  Google Scholar 

  98. Hu J, Kurokawa T, Hiwatashi K, Nakajima T, Wu ZL, Liang SM, Gong JP (2012) Structure optimization and mechanical model for microgel-reinforced hydrogels with high strength and toughness. Macromolecules 45:5218–5228

    Article  CAS  Google Scholar 

  99. Meid J, Dierkes F, Cui J, Messing R, Crosby AJ, Schmidt A, Richtering W (2012) Mechanical properties of temperature sensitive microgel/polyacrylamide composite hydrogels-from soft to hard fillers. Soft Matter 8:4254–4263

    Article  CAS  Google Scholar 

  100. Meid J, Friedrich T, Tieke B, Lindner P, Richtering W (2011) Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels. Phys Chem Chem Phys 13:3039–3047

    Article  CAS  Google Scholar 

  101. Lehmann S, Seiffert S, Richtering W (2012) Spatially resolved tracer diffusion in complex responsive hydrogels. J Am Chem Soc 134:15963–15969

    Article  CAS  Google Scholar 

  102. Harada A, Hashidzume A, Yamaguchi H, Takashima Y (2009) Polymeric rotaxanes. Chem Rev 109:5974–6023

    Article  CAS  Google Scholar 

  103. Kato K, Komatsu H, Ito K (2010) A versatile synthesis of diverse polyrotaxanes with a dual role of cyclodextrin as both the cyclic and capping components. Macromolecules 43:8799–8804

    Article  CAS  Google Scholar 

  104. Kato K, Inoue K, Kidowaki M, Ito K (2009) Organic–inorganic hybrid slide-ring gels: polyrotaxanes consisting of poly(dimethylsiloxane) and gamma-cyclodextrin and subsequent topological cross-linking. Macromolecules 42:7129–7136

    Article  CAS  Google Scholar 

  105. Matsunaga T, Sakai T, Akagi Y, Chung U, Shibayama M (2009) Structure Characterization of tetra-PEG gel by small-angle neutron scattering. Macromolecules 42:1344–1351

    Article  CAS  Google Scholar 

  106. Akagi Y, Matsunaga T, Shibayama M, Chung U, Sakai T (2010) Evaluation of topological defects in tetra-PEG gels. Macromolecules 43:488–493

    Article  CAS  Google Scholar 

  107. Matsunaga T, Sakai T, Akagi Y, Chung UI, Shibayama M (2009) SANS and SLS Studies on tetra-arm PEG Gels in as-prepared and swollen states. Macromolecules 42:6245–6252

    Article  CAS  Google Scholar 

  108. Abdurrahmanoglu S, Can V, Okay O (2009) Design of high-toughness polyacrylamide hydrogels by hydrophobic modification. Polymer 50:5449–5455

    Article  CAS  Google Scholar 

  109. Friedrich T, Tieke B, Stadler FJ, Bailly C (2011) Improvement of elasticity and strength of poly(N-isopropylacrylamide) hydrogels upon copolymerization with cationic surfmers. Soft Matter 7:6590–6597

    Article  CAS  Google Scholar 

  110. Thomas JD, Fussell G, Sarkar S, Lowman AM, Marcolongo M (2010) Synthesis and recovery characteristics of branched and grafted PNIPAAm-PEG hydrogels for the development of an injectable load-bearing nucleus pulposus replacement. Acta Biomater 6:1319–1328

    Article  CAS  Google Scholar 

  111. Wang M, Kornfield JA (2012) Measuring shear strength of soft-tissue adhesives. J Biomed Mater Res Part B-Appl Biomater 100B:618–623

    Article  CAS  Google Scholar 

  112. Mintzer MA, Grinstaff MW (2011) Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40:173–190

    Article  CAS  Google Scholar 

  113. Oelker AM, Berlin JA, Wathier M, Grinstaff MW (2011) Synthesis and characterization of dendron cross-linked PEG Hydrogels as corneal adhesives. Biomacromolecules 12:1658–1665

    Article  CAS  Google Scholar 

  114. M. Wathier and M. W. Grinstaff, Hydrogel sealants for wound repair in ophthalmic surgery, Biomaterials and Regenerative Medicine in Ophthalmology, pp. 411–432, 2009.

  115. Sedo J, Saiz-Poseu J, Busque F, Ruiz-Molina D (2013) Catechol-based biomimetic functional materials. Adv Mater 25:653–701

    Article  CAS  Google Scholar 

  116. Wilker JJ (2010) Marine bioinorganic materials: mussels pumping iron. Curr Opin Chem Biol 14:276–283

    Article  CAS  Google Scholar 

  117. Wilker JJ (2010) The iron-fortified adhesive system of marine mussels. Angew Chem Int Ed 49:8076–8078

    Article  CAS  Google Scholar 

  118. Wilker JJ (2011) Biomaterials: Redox and adhesion on the rocks. Nat Chem Biol 7:579–580

    Article  CAS  Google Scholar 

  119. Mehdizadeh M, Weng H, Gyawali D, Tang LP, Yang J (2012) Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 33:7972–7983

    Article  CAS  Google Scholar 

  120. Brubaker CE, Kissler H, Wang LJ, Kaufman DB, Messersmith PB (2010) Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials 31:420–427

    Article  CAS  Google Scholar 

  121. Haller CM, Buerzle W, Brubaker CE, Messersmith PB, Mazza E, Ochsenbein-Koelble N, Zimmermann R, Ehrbar M (2011) Mussel-mimetic tissue adhesive for fetal membrane repair: a standardized ex vivo evaluation using elastomeric membranes. Prenat Diagn 31:654–660

    Article  CAS  Google Scholar 

  122. Brubaker CE, Messersmith PB (2012) The present and future of biologically inspired adhesive interfaces and materials. Langmuir 28:2200–2205

    Article  CAS  Google Scholar 

  123. D. J. Barrett, G. G. Bushnell, and P. B. Messersmith, Mechanically robust, negative-swelling, mussel-inspired tissue adhesive, Advanced Healthcare Materials, vol. DOI: 10.1001/adhm.201200316, 2012.

  124. Kaur S, Weerasekare GM, Stewart RJ (2011) Multiphase Adhesive coacervates inspired by the sandcastle worm. ACS Appl Mater Interfaces 3:941–944

    Article  CAS  Google Scholar 

  125. H. Shao and R. J. Stewart, Biomimetic underwater adhesives with environmentally triggered setting mechanisms, Advanced Materials, vol. 22, pp. 729–+, Feb 9 2010.

  126. Shao H, Bachus KN, Stewart RJ (2009) A water-borne adhesive modeled after the sandcastle glue of P-californica. Macromol Biosci 9:464–471

    Article  CAS  Google Scholar 

  127. Strehin I, Nahas Z, Arora K, Nguyen T, Elisseeff J (2010) A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel. Biomaterials 31:2788–2797

    Article  CAS  Google Scholar 

  128. Simson J, Crist J, Strehin I, Lu QZ, Elisseeff JH (2013) An orthopedic tissue adhesive for targeted delivery of intraoperative biologics. J Orthop Res 31:392–400

    Article  CAS  Google Scholar 

  129. Amoozgar Z, Rickett T, Park J, Tuchek C, Shi RY, Yeo Y (2012) Semi-interpenetrating network of polyethylene glycol and photocrosslinkable chitosan as an in-situ-forming nerve adhesive. Acta Biomater 8:1849–1858

    Article  CAS  Google Scholar 

  130. Arunbabu D, Shahsavan H, Zhang W, Zhao BX (2013) Poly(AAc-co-MBA) hydrogel films: adhesive and mechanical properties in aqueous medium. J Phys Chem B 117:441–449

    Article  CAS  Google Scholar 

  131. Iyer BVS, Salib IG, Yashin VV, Kowalewski T, Matyjaszewski K, Balazs AC (2013) Modeling the response of dual cross-linked nanoparticle networks to mechanical deformation. Soft Matter 9:109–121

    Article  CAS  Google Scholar 

  132. Calvo-Marzal P, Delaney MP, Auletta, JT, Pan T, Perri NM, Weiland LM, Waldeck DH, Clark WW, Meyer TY (2012) Manipulating mechanical properties with electricity: Electroplastic elastomer hydrogels. ACS Macro Letters 1:204–208

Download references

Acknowledgments

This work was supported by the Weldon School of Biomedical Engineering at Purdue University (GS), by the National Science Foundation (JJW) and by the Office of Naval Research (JJW). We thank the reviewers for useful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudrun Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peak, C.W., Wilker, J.J. & Schmidt, G. A review on tough and sticky hydrogels. Colloid Polym Sci 291, 2031–2047 (2013). https://doi.org/10.1007/s00396-013-3021-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3021-y

Keywords

Navigation