Skip to main content
Log in

Ethanol effects on the gelation behavior of α-tocopherol acetate-encapsulated ethosomes with water-soluble polymers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This work aims at understanding the ethanol effects on the gelation behavior of ethosomes with the consideration of encapsulating a hydrophobic material. Gelation of the empty ethosomes by positively charged water-soluble polymers with and without hydrophobic modification, respectively, was systematically studied first for the effects of solution dielectric constant and gelator concentration on the phase map and rheological property of the mixtures. A comparison of the gelation behavior of empty and α-tocopherol acetate (α-TA)-encapsulated ethosomes sheds light on the possible influence of encapsulated hydrophobic material itself on the interaction between ethosomal lipid bilayers and gelator molecules. The experimental results revealed that ethosomes with an optimized amount of ethanol could result in a reasonable lifetime and encapsulation efficiency of more than 90 %. This is due to the effects of the solution dielectric constant on the formability of liposome and the partition of the hydrophobic material (α-TA) between ethosomal lipid bilayer and bulk phase. Moreover, the phase map and rheological property of the ethosome/polymer mixtures were found to be affected by the configuration of the polymer chain in aqueous ethanol solution. That is, the driving interactions between ethosomal lipid bilayers and gelator molecules were dominated by the hydrophobic material more than the electrostatic association. Finally, inclusion of a hydrophobic material, such as α-TA, in the ethosomes had less influence on the gelation behavior of the ethosomes with water-soluble polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Touitou E, Dayan N, Bergelson L et al (2000) J Control Release 65:403–418

    Article  CAS  Google Scholar 

  2. Elsayed MMA, Abdallah OY, Naggar VF, Khalafallah NM (2007) Int J Pharm 332:1–16

    Article  CAS  Google Scholar 

  3. Schreier H, Bouwstra J (1994) J Control Release 30:1–15

    Article  CAS  Google Scholar 

  4. Soussan E, Cassel S, Blanzat M, Rico-Lattes I (2009) Angew Chem Int Edit 48:274–288

    Article  CAS  Google Scholar 

  5. Planas ME, Gonzalez P, Rodriguez L et al (1992) Anesth Analg 75:615–621

    Article  CAS  Google Scholar 

  6. Consola S, Blanzat M, Perez E et al (2007) Chem Eur J 13:3039–3047

    Article  CAS  Google Scholar 

  7. Magnusson BM, Runn P, Karlsson K, Koskinen LOD (1997) Int J Pharm 157:113–121

    Article  CAS  Google Scholar 

  8. Touitou E, Godin B, Weiss C (2000) Drug Dev Res 50:406–415

    Article  CAS  Google Scholar 

  9. Lopez-Pinto JM, Gonzalez-Rodriguez ML, Rabasco AM (2005) Int J Pharm 298:1–12

    Article  CAS  Google Scholar 

  10. Godin B, Touitou E (2004) J Control Release 94:365–379

    Article  CAS  Google Scholar 

  11. Godin B, Touitou E (2005) Curr Drug Deliv 2:269–275

    Article  CAS  Google Scholar 

  12. Huang JB, Zhu BY, Zhao GX, Zhang ZY (1997) Langmuir 13:5759–5761

    Article  CAS  Google Scholar 

  13. Zhang XR, Huang JB, Mao M et al (2001) Colloid Polym Sci 279:1245–1249

    Article  CAS  Google Scholar 

  14. Yeh SJ, Yang YM, Chang CH (2005) Langmuir 21:6179–6184

    Article  CAS  Google Scholar 

  15. Yu WY, Yang YM, Chang CH (2005) Langmuir 21:6185–6193

    Article  CAS  Google Scholar 

  16. Wu KC, Huang ZL, Yang YM et al (2007) Colloids Surf A 302:599–607

    Article  CAS  Google Scholar 

  17. Yang YM, Wu KC, Huang ZL, Chang CH (2008) Langmuir 24:1695–1700

    Article  Google Scholar 

  18. Dayan N, Touitou E (2000) Biomaterials 21:1879–1885

    Article  CAS  Google Scholar 

  19. VaIbhav D, Dinesh M, JN K (2007) Eur J Pharm Biopharm 67:398–405

    Article  Google Scholar 

  20. Rao Y, Zheng F, Zhang X et al (2008) AAPS PharmSciTech 9:860–865

    Article  CAS  Google Scholar 

  21. Zhou Y, Wei Y-H, Zhang G, Wu X-A (2010) Arch Pharm Res 33:567–574

    Article  CAS  Google Scholar 

  22. Bhalaria MK, Naik S, Misra AN (2009) Indian J Exp Biol 47:368–375

    CAS  Google Scholar 

  23. Garg AK, Negi LM, Chauhan M (2010) Int J Pharm Pharm Sci 2:102–108

    CAS  Google Scholar 

  24. Hincha DK (2008) FEBS Lett 582:3687–3692

    Article  CAS  Google Scholar 

  25. Padamwar MN, Pokharkar VB (2006) Int J Pharm 320:37–44

    Article  CAS  Google Scholar 

  26. Arshad M, Anjum F, Asghar A et al (2011) J Agr Food Chem 59:7346–7352

    Article  CAS  Google Scholar 

  27. Touitou E, Godin B (2008) Clin Dermatol 26:375–379

    Article  Google Scholar 

  28. Touitou E, Godin B (2006) J Appl Cosmetology 24:139–147

    CAS  Google Scholar 

  29. Lodzki M, Godin B, Rakou L et al (2003) J Control Release 93:377–387

    Article  CAS  Google Scholar 

  30. Ainbinder D, Touitou E (2005) Drug Deliv 12:297–303

    Article  CAS  Google Scholar 

  31. Maestrelli F, Capasso G, Gonzalez-Rodriguez ML et al (2009) J Liposome Res 19:253–260

    Article  CAS  Google Scholar 

  32. Shumilov M, Bercovich R, Duchi S et al (2010) J Biomed Nanotechnol 6:569–576

    Article  CAS  Google Scholar 

  33. Shumilov M, Touitou E (2010) Int J Pharm 387:26–33

    Article  CAS  Google Scholar 

  34. Akhtar N, Pathak K (2012) AAPS PharmSciTech 13:344–355

    Article  CAS  Google Scholar 

  35. Liu XL, Liu H, Liu JQ, He ZW, Ding CC, Huang GL, Zhou WH, Zhou LS (2011) Int J Nanomed 6:241–247

    Article  CAS  Google Scholar 

  36. Bendas ER, Tadros MI (2007) AAPS PharmSciTech 8:E1–E8

    Article  Google Scholar 

  37. Antunes FE, Marques EF, Miguel MG, Lindman B (2009) Adv Colloid Interf Sci 147–48:18–35

    Article  Google Scholar 

  38. Lin C-C, Chang C-H, Yang Y-M (2009) Colloids Surf A 346:66–74

    Article  CAS  Google Scholar 

  39. Huang ZL, Hong JY, Chang CH, Yang YM (2010) Langmuir 26:2374–2382

    Article  CAS  Google Scholar 

  40. Thuresson K, Nilsson S, Lindman B (1996) Langmuir 12:530–537

    Article  CAS  Google Scholar 

  41. Grillet AM, Wyatt NB, Gloe LM (2012) Polymer gel rheology and adhesion. InTech, Croatia, pp 59–80

    Google Scholar 

  42. Larson RG (1998) The structure and rheology of complex fluids. Oxford University Press, Oxford, pp 232–259

  43. Ferry J (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  44. Yilmaz H, Güler S, Güler C (1999) Phys Scr 59:77–80

    Article  CAS  Google Scholar 

  45. Chanda J, Bandyopadhyay S (2006) Langmuir 22:3775–3781

    Article  CAS  Google Scholar 

  46. Gurtovenko AA, Anwar J (2009) J Phys Chem B 113:1983–1992

    Article  CAS  Google Scholar 

  47. Pillman HA, Blanchard GJ (2010) J Phys Chem B 114:3840–3846

    Article  CAS  Google Scholar 

  48. Roth LG, Chen CH (1991) J Phys Chem 95:7955–7959

    Article  CAS  Google Scholar 

  49. Slater SJ, Ho C, Taddeo FJ et al (1993) Biochemistry 32:3714–3721

    Article  CAS  Google Scholar 

  50. Komatsu H, Rowe ES (1991) Biochemistry 30:2463–2470

    Article  CAS  Google Scholar 

  51. Massey JB (2001) Chem Phys Lipids 109:157–174

    Article  CAS  Google Scholar 

  52. Stillwell W, Dallman T, Dumaual AC et al (1996) Biochemistry 35:13353–13362

    Article  CAS  Google Scholar 

  53. Dubbs MD, Gupta RB (1998) J Chem Eng Data 43:590–591

    Article  CAS  Google Scholar 

  54. Jenkins P, Snowden M (1996) Adv Colloid Interf Sci 68:57–96

    CAS  Google Scholar 

  55. Feigin RI, Napper DH (1980) J Colloid Interf Sci 75:525–541

    Article  CAS  Google Scholar 

  56. Kawakami K, Nishihara Y, Hirano K (2001) J Phys Chem B 105:2374–2385

    Article  CAS  Google Scholar 

  57. Tribet C, Vial F (2008) Soft Matter 4:68–81

    Article  CAS  Google Scholar 

  58. Hara M (1993) Polyelectrolytes: science and technology. Marcel Dekker, New York, pp 193–264

  59. Wicks ZW, Jones FN, Pappas SP, Wicks DA (2007) Organic coatings—science and technology. Wiley, New York, pp 41–67

  60. Abdala AA, Olesen K, Khan SA (2003) J Rheology 47:497–511

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council of Taiwan through Grants NSC 100-2221-E-006-184 and NSC 101-2221-E-006-239-MY2. The authors are grateful to Professors Tzung-Han Chou and Chia-Hua Liang at Chia Nan University of Pharmacy and Science for providing access to the high-performance liquid chromatography and fluorescence polarization measurements. The authors are also grateful to Professor Lynn L.H. Huang at National Cheng Kung University for providing access to the rheometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Min Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 220 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, CW., Chang, CH. & Yang, YM. Ethanol effects on the gelation behavior of α-tocopherol acetate-encapsulated ethosomes with water-soluble polymers. Colloid Polym Sci 291, 1341–1352 (2013). https://doi.org/10.1007/s00396-012-2864-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2864-y

Keywords

Navigation