Skip to main content
Log in

Preparation of magnetic polyurethane rigid foam nanocomposites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Super paramagnetic Fe3O4@SiO2 nanoparticle was incorporated into polyurethane rigid foams in order to prepare new corresponded magnetic nanocomposite foams via one-shot method. The core–shell-structured nanoparticles were prepared by sol–gel method and characterized by transmission electron microscopy, X-ray diffraction, as well as Fourier transform infrared spectroscopy techniques. Magnetic nanoparticles were used up to 3 % in the foam formulations and the samples prepared successfully. Thermal, mechanical, and magnetic properties of nanocomposites were studied and the results showed superior properties in comparison with pristine foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Perez JM, O'Loughin T, Simeone FJ, Weissleder R, Josephson L (2002) DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J Am Chem Soc 124(12):2856–2857. doi:10.1021/ja017773n

    Article  CAS  Google Scholar 

  2. Kinsella JM, Ivanisevic A (2005) Enzymatic clipping of DNA wires coated with magnetic nanoparticles. J Am Chem Soc 127(10):3276–3277. doi:10.1021/ja043865b

    Article  CAS  Google Scholar 

  3. Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X, Guo Z, Xu B (2004) Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc 126(32):9938–9939. doi:10.1021/ja0464802

    Article  CAS  Google Scholar 

  4. Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin CH, Park JG, Kim J, Hyeon T (2005) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128(3):688–689. doi:10.1021/ja0565875

    Article  Google Scholar 

  5. Zhou L, Li G, An T, Li Y (2010) Synthesis and characterization of novel magnetic Fe3O4/polyurethane foam composite applied to the carrier of immobilized microorganisms for wastewater treatment. Res Chem Intermed 36(3):277–288. doi:10.1007/s11164-010-0134-5

    Article  CAS  Google Scholar 

  6. Saha MC, Kabir ME, Jeelani S (2008) Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles. Mater Sci Eng, A 479(1–2):213–222. doi:10.1016/j.msea.2007.06.060

    Google Scholar 

  7. Jeon HT, Jang MK, Kim BK, Kim KH (2007) Synthesis and characterizations of waterborne polyurethane–silica hybrids using sol–gel process. Colloids Surf, A 302(1–3):559–567. doi:10.1016/j.colsurfa.2007.03.043

    Article  CAS  Google Scholar 

  8. Khudyakov IV, Zopf DR, Turro NJ (2009) Polyurethane nanocomposites. Des Monomers Polym 12(4):279–290. doi:10.1163/156855509x448253

    Article  CAS  Google Scholar 

  9. Guo Z, Park S, Wei S, Pereira T, Moldovan M, Karki AB, Young DK, Hahn HT (2007) Flexible high-loading particle-reinforced polyurethane magnetic nanocomposite fabrication through particle-surface-initiated polymerization. Nanotechnology 18:335704–335712. doi:10.1088/0957-4484/18/33/335704

    Article  Google Scholar 

  10. Guo Z, Kim TY, Lei K, Pereira T, Sugar JG, Hahn HT (2008) Strengthening and thermal stabilization of polyurethane nanocomposites with silicon carbide nanoparticles by a surface-initiated-polymerization approach. Compos Sci Technol 68(1):164–170. doi:10.1016/j.compscitech.2007.05.031

    Article  CAS  Google Scholar 

  11. Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225(1–2):30–36. doi:10.1016/s0304-8853(00)01224-5

    Article  CAS  Google Scholar 

  12. Guo Z, Lee SE, Kim H, Park S, Hahn HT, Karki AB, Young DP (2009) Fabrication, characterization and microwave properties of polyurethane nanocomposites reinforced with iron oxide and barium titanate nanoparticles. Acta Materialia 57(1):267–277. doi:10.1016/j.actamat.2008.09.024

    Article  CAS  Google Scholar 

  13. Guo Z, Lin H, Karki AB, Wei S, Young DP, Park S, Willis J, Hahn TH (2008) Facile monomer stabilization approach to fabricate iron/vinyl ester resin nanocomposites. Compos Sci Technol 68(12):2551–2556. doi:10.1016/j.compscitech.2008.05.017

    Article  CAS  Google Scholar 

  14. Gu H, Huang Y, Zhang X, Wang Q, Zhu J, Shao L, Haldolaarachchige N, Young DP, Wei S, Guo Z (2012) Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Polymer 53(3):801–809. doi:10.1016/j.polymer.2011.12.033 and referenced cited there in

    Article  CAS  Google Scholar 

  15. Lu Y, Yin Y, Mayers BT, Xia Y (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol–gel approach. Nano Lett 2(3):183–186. doi:10.1021/nl015681q

    Article  CAS  Google Scholar 

  16. Du G, Liu Z, Xia X, Chu Q, Zhang S (2006) Characterization and application of Fe3O4/SiO2 nanocomposites. J Sol-Gel Sci Technol 39(3):285–291. doi:10.1007/s10971-006-7780-5

    Article  CAS  Google Scholar 

  17. Ketelson HA, Pelton R, Brook MA (1996) Colloidal stability of Stöber silica in acetone. Langmuir 12(5):1134–1140. doi:10.1021/la950434l

    Article  CAS  Google Scholar 

  18. Wang Y, Peng X, Shi J, Tang X, Jiang J, Liu W (2012) Highly selective fluorescent chemosensor for Zn2+ derived from inorganic–organic hybrid magnetic core/shell Fe3O4@SiO2 nanoparticles. Nanoscale Res Lett 7(1):1–13. doi:10.1186/1556-276x-7-86

    Article  Google Scholar 

  19. Wu C, He H, Gao H, Liu G, Ma R, An Y, Shi L (2010) Synthesis of Fe3O4@SiO2@polymer nanoparticles for controlled drug release. Sci China: Chem 53(3):514–518. doi:10.1007/s11426-010-0084-1

    Article  CAS  Google Scholar 

  20. Liu G, Wu H, Zheng H, Tang L, Hu H, Yang H, Yang S (2011) Synthesis and applications of fluorescent-magnetic-bifunctional dansylated Fe3O4@SiO2 nanoparticles. J Mater Sci 46(18):5959–5968. doi:10.1007/s10853-011-5551-3

    Article  CAS  Google Scholar 

  21. Mammeri F, Bourhis EL, Rozes L, Sanchez C (2005) Mechanical properties of hybrid organic–inorganic materials. J Mater Chem 15(35–36):3787–3811

    Article  CAS  Google Scholar 

  22. Judeinstein P, Sanchez C (1996) Hybrid organic-inorganic materials: a land of multidisciplinarity. J Mater Chem 6(4):511–525

    Article  CAS  Google Scholar 

  23. Marutani E, Yamamoto S, Ninjbadgar T, Tsujii Y, Fukuda T, Takano M (2004) Surface-initiated atom transfer radical polymerization of methyl methacrylate on magnetite nanoparticles. Polymer 45(7):2231–2235. doi:10.1016/j.polymer.2004.02.005

    Article  CAS  Google Scholar 

  24. Yu S, Chow GM (2004) Carboxyl group (–CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J Mater Chem 14(18):2781–2786

    Article  CAS  Google Scholar 

  25. Wilson JL, Poddar P, Frey NA, Srikanth H, Mohomed K, Harmon JP, Kotha S, Wachsmuth J (2004) Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. J Appl Phys 95(3):1439–1443

    Article  CAS  Google Scholar 

  26. Guo Z, Henry LL, Palshin V, Podlaha EJ (2006) Synthesis of poly(methyl methacrylate) stabilized colloidal zero-valence metallic nanoparticles. J Mater Chem 16(18):1772–1777

    Article  CAS  Google Scholar 

  27. Alavi Nikje MM, Mazaheri Tehrani Z, Bagheri Garmarudi A, Haghshenas M (2009) Chemical treatment of silica nanoparticles by diethanolamine and γ-glycidoxypropyltrimethoxysilane and application of modified nanoparticles in epoxy-based composites. Polym-Plast Technol Eng 48(9):891–896. doi:10.1080/03602550902994979

    Article  CAS  Google Scholar 

  28. Alavi Nikje MM, Mazaheri Tehrani Z (2010) Novel modified nanosilica-based on synthesized dipodal silane and its effects on the physical properties of rigid polyurethane foams. Des Monomers Polym 13(3):249–260. doi:10.1163/138577210x12634696333631

    Article  Google Scholar 

  29. Alavi Nikje MM, Bagheri Garmarudi A (2011) Application of SiO2 nanoparticles for thermophysical improvement of integral skin polyurethane elastomers. Adv Compos Mater 20(1):79–89. doi:10.1163/092430410x504242

    Article  Google Scholar 

  30. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  31. Macosko CW (1993) Rheology: principles, measurements, and applications (advances in interfacial engineering). Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The authors thank Imam Khomeini International University for the financial supporting of Dr. Alavi Nikje with grant number of 751575-1390.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Mohammad Alavi Nikje.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alavi Nikje, M.M., Farahmand Nejad, M.A., Shabani, K. et al. Preparation of magnetic polyurethane rigid foam nanocomposites. Colloid Polym Sci 291, 903–909 (2013). https://doi.org/10.1007/s00396-012-2808-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2808-6

Keywords

Navigation