Skip to main content

Advertisement

Log in

Chitosan-based nanocapsules: physical characterization, stability in biological media and capsaicin encapsulation

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

This study addresses the effect of the degree of N-acetylation (DA ~1.4–56 %) of chitosan (CS) of low and medium molecular weight (M w  ~ 9.5–13.2 and ~122–266 kDa, respectively) on the biophysical properties, colloidal stability and encapsulation efficiency of capsaicin (a lipophilic drug currently used in pain therapy) of CS-based nanocapsules (NCs). The average diameter of the NCs varied within the range of ~150–200 nm, but it was slightly higher for NCs comprising high M w CS than for those with low M w CS. The zeta potential (ζ) was highly positive and clearly dependent on the M w of CS, exhibiting a monotonic decreasing trend concomitant with the increase in DA. Both results suggest that M w and DA of CS have an effect on the disposition of the polysaccharide onto the phospholipidic surface. Synchrotron SAXS studies revealed a monotonic increase in Bragg interplanar distances (from ~55 up to ~67 Å) as a function of the DA, a finding that agrees with previous results that are consistent with the capacity of hydrophobic domains to disturb the crystalline state of gelled phospholipidic membranes. Colloidal stability studies carried out in cell-culture biological media revealed the determinant role of hydration forces, a short-range repulsive interaction, on the stability of the NCs. Finally, M w and DA of CS both influenced the encapsulation efficiency of capsaicin, thus showing the effect of the harnessed NCs shell on its capacity to encapsulate lipophilic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Calvo P, Remuñan-Lopez C, Vila-Jato JL, Alonoso MJ (1997) Development of positively charged colloidal carriers: chitosan-coated polyester nanocapsules and submicron emulsions. Colloid Polymer Sci 275:46–53

    Article  CAS  Google Scholar 

  2. Prego C, Fabre M, Torres D, Alonso MJ (2006) Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery. Pharm Res 23(3):549–556

    Article  CAS  Google Scholar 

  3. Prego C, Torres D, Alonso MJ (2006) Chitosan nanocapsules as carriers for oral peptide delivery: effect of chitosan molecular weight and type of salt on the in vitro behaviour and in vivo effectiveness. J Nanosci Nanotechnol 6(9–10):2921–2928

    Article  CAS  Google Scholar 

  4. Prego C, Torres D, Alonoso MJ (2006) Chitosan nanocapsules: a new carrier for nasal peptide delivery. J Drug Deliv Sci Tech 16:331–337

    CAS  Google Scholar 

  5. Lozano MV, Torrecilla D, Torres D, Vidal A, Domínguez F, Alonso MJ (2008) Highly efficient system to deliver taxanes into tumor cells: docetaxel-loaded chitosan oligomer colloidal carriers. Biomacromolecules 9:2186–2193

    Article  CAS  Google Scholar 

  6. Vicente S, Diaz B, Sanchez A, Gonzalez-Fernandez A, Alonso MJ Polysaccharide-based nanocapsules as vehicles for nasal immunization against hepatitis B. 2nd PharmSciFair, Premier European Platform for Advancing Pharmaceutical Sciences, 2010

  7. López-Montilla JC, Herrera-Morales PE, Pandey S, Shah DO (2002) Spontaneous emulsification: mechanisms, physicochemical aspects, modeling, and applications. J Dispers Sci Technol 23:219–268

    Google Scholar 

  8. Santander-Ortega MJ, Peula-García JM, Goycoolea FM, Ortega-Vinuesa JL (2011) Chitosan nanocapsules: effect of chitosan molecular weight and acetylation degree on their electrokinetic and stability behaviour. Colloids Surf B Biointerfaces 82:571–580

    Google Scholar 

  9. Cortright DN, Zallasi A (2004) Biochemical pharmacology of the vanilloid receptor TRPV1. An update. Eur J Biochem 271:814–819

    Article  Google Scholar 

  10. Bevan S, Szolcsányi J (1990) Sensory neuron-specific actions of capsaicin: mechanisms and applications. Trends Pharmacol Sci 11:330–333

    Article  CAS  Google Scholar 

  11. Prego C, Garcia M, Torres D, Alonso MJ (2005) Transmucosal macromolecular drug delivery. J Contr Release 101(1–3):151–162

    Article  CAS  Google Scholar 

  12. Calvo P, Vila-Jato JL, Alonso MJ (1997) Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int J Pharm 153:41–50, 41

    Article  CAS  Google Scholar 

  13. Quemeneur F, Rammal A, Rinaudo M, Pepin-Donat B (2007) Large and giant vesicles “decorated” with chitosan: effects of pH, salt or glucose stress, and surface adhesion. Biomacromolecules 8:2512–2519

    Article  CAS  Google Scholar 

  14. van der Lubben IM, Verhoef JC, Borchard G, Junginger HE (2001) Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci 14:201–207

    Article  Google Scholar 

  15. Quemeneur F, Rinaudo M, Pepin-Donat B (2008) Influence of molecular weight and ph on adsorption of chitosan at the surface of large and giant vesicles. Biomacromolecules 9:396–402

    Article  CAS  Google Scholar 

  16. Fang N, Chan V (2003) Chitosan-induced restructuration of a mica-supported phospholipid bilayer: an atomic force microscopy study. Biomacromolecules 4:1596–1604

    Article  CAS  Google Scholar 

  17. Fang N, Chan V, Mao HQ, Leong KW (2001) Interactions of phospholipid bilayer with chitosan: effect of molecular weight and pH. Biomacromolecules 2:1161–1168

    Article  CAS  Google Scholar 

  18. Pavinatto FJ, Caseli L, Pavinatto A, dos Santos DS, Nobre TM, Zaniquelli MED, Silva HS, Miranda PB, de Oliveira ON (2007) Probing chitosan and phospholipid interactions using Langmuir and Langmuir-Blodgett films as cell membrane models. Langmuir 23:7666–7671

    Article  CAS  Google Scholar 

  19. Nervo R, Konovalov O, Rinaudo M (2012) Chitosan-behenic acid monolayer interaction at the air-water interface: characterization of the adsorbed polymer layers by X-ray reflectivity. Int J Polymer Anal Char 17:11–20. doi:10.1080/1023666x.2011.628780

    Article  CAS  Google Scholar 

  20. Santander-Ortega MJ, Lozano-Lopez MV, Bastos-Gonzalez D, Peula-Garcia JM, Ortega-Vinuesa JL (2009) Novel core–shell lipid-chitosan and lipid-poloxamer nanocapsules: stability by hydration forces. Colloid Polymer Sci 288:159–172

    Article  Google Scholar 

  21. Alonso-Sande M, Cuna M, Remuñán-López C, Alonoso MJ (2006) Formation of new glucomannan-chitosan nanoparticles and study of their ability to associate and deliver proteins. Macromolecules 39:4152-4158

    Google Scholar 

  22. Santander-Ortega MJ, Jodar-Reyes AB, Csaba N, Bastos-Gonzalez D, Ortega-Vinuesa JL (2006) Colloidal stability of pluronic F68-coated PLGA nanoparticles: a variety of stabilisation mechanisms. J Colloid Interface Sci 302:522–529

    Article  CAS  Google Scholar 

  23. Santander-Ortega MJ, Stauner T, Loretz B, Ortega-Vinuesa JL, Bastos-Gonzalez D, Wenz G, Schaefer UF, Lehr CM (2010) Nanoparticles made from novel starch derivatives for transdermal drug delivery. J Contr Release 141:85–92

    Article  CAS  Google Scholar 

  24. López-León T, Santander-Ortega MJ, Ortega-Vinuesa JL, Bastos-González D (2008) Hofmeister effects in colloidal systems: influence of the surface nature. J Phys Chem C 112:16060–16069

    Article  Google Scholar 

  25. Anackearn EW, Ghose DHM (1963) Counterions and micelle size. I. Light scattering by solutions of dodecyltrimethylammonium salts. J Am Chem Soc 67:1713–1715

    Google Scholar 

  26. Allan GG, Peyron M (1995) Molecular weight manipulation of chitosan I: kinetics of depolymerization by nitrous acid. Carbohydr Res 277:257–272

    Article  CAS  Google Scholar 

  27. Lamarque G, Lucas JL, Viton C, Domard A (2005) Physicochemical behavior of homogeneous series of acetylated chitosans in aqueous solution: role of various structural parameters. Biomacromolecules 6:131–146

    Article  CAS  Google Scholar 

  28. Muzzarelli RAA (1998) Colorimetric determination of chitosan. Anal Biochem 260:255–257

    Article  CAS  Google Scholar 

  29. Wang YY, Hong CT, Chiu WT, Fang JY (2001) In vitro and in vivo evaluations of topically applied capsaicin and nonivamide from hydrogels. Int J Pharm 224:89–104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from the European Union for projects Nanobiosaccharides (ref. no. 013882 FP6) and BioNanoSmart-DDS (ref. no. 908111 FP7-PEOPLE Programme Marie Curie); from European Synchrotron Research Facility (France) for project ref. SC-2774; from “Ministerio de Ciencia e Innovación” (Spain) for project Consolider Nanobiomed (ref. no. CSD 2006–00012); from the “Consejería de Innovación, Ciencia y Tecnología de la Junta de Andalucía” (Spain) for projects P07-FQM-2496 and P07-FQM-03099 and from “Xunta de Galicia” (Spain) for a research fellowship to one of us (MJS) (Ángeles Alvariño research programme ref. IN840D) is in all cases gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco M. Goycoolea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goycoolea, F.M., Valle-Gallego, A., Stefani, R. et al. Chitosan-based nanocapsules: physical characterization, stability in biological media and capsaicin encapsulation. Colloid Polym Sci 290, 1423–1434 (2012). https://doi.org/10.1007/s00396-012-2669-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2669-z

Keywords

Navigation