Skip to main content
Log in

Effect of pH on monolayer properties of colloidal silica particles at the air/water interface

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Monodisperse colloidal silica particles were prepared by the Stöber method and hydrophobized by grafting a silane coupling agent, octadecyltrimethoxysilane. Two different types of silica particles, i.e., hydrophilic and hydrophobic silica particles were spread at the air/water interface to form the Langmuir monolayers. Monolayer properties of those particles were investigated by measuring surface pressure–area (π–A) isotherms at different subphase pH. At pH above the isoelectric point (IEP) of silica, as pH increased the π–A isotherms for the hydrophobic particles slightly shifted to larger surface area whereas those for the hydrophilic particles showed a reverse trend. At pH below the IEP, the π–A isotherms for both types of particles shifted to much larger surface area with different shapes. In order to analyze the π–A isotherm results further, the time dependence of π was examined. When pH is above the IEP, the π for the hydrophilic particles significantly decreased with increasing time and it did more at higher pH. On the other hand, the decrease in π for the hydrophobic particles was insignificant regardless of pH. For both types of silica particles, the decrease in π was minimal at pH below the IEP. These results were discussed in terms of particle desorption into the water subphase and interparticle electrostatic repulsion which is directly influenced by zeta potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xia Y, Gates B, Li ZY (2001) Self-assembly approaches to three-dimensional photonic crystals. Adv Mater 13:409–413

    Article  CAS  Google Scholar 

  2. Jiang P, Ostojic GN, Narat R, Mittleman DM, Colvin VL (2001) The fabrication and bandgap engineering of photonic multilayer. Adv Mater 13:389–393

    Article  CAS  Google Scholar 

  3. Ozin GA, Yang SM (2001) The race for the photonic chip: colloidal crystal assembly in silicon wafers. Adv Funct Mater 11:95–104

    Article  CAS  Google Scholar 

  4. Pan G, Kesavamoorthy R, Asher SA (1997) Optically nonlinear Bragg diffracting nanosecond optical switches. Phys Rev Lett 78:3860–3863

    Article  CAS  Google Scholar 

  5. Lin SY, Chow E, Hietala V, Villeneuve PR, Joannopoulos JD (1998) Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 282:274–276

    Article  CAS  Google Scholar 

  6. Velev O, Lenhoff AM (2000) Colloidal crystals as templates for porous materials. Curr Opin Colloid Interface Sci 5:56–63

    Article  CAS  Google Scholar 

  7. Liu C, Martin CR (1991) Composite membranes from photochemical synthesis of ultrathin polymer films. Nature 352:50–52

    Article  CAS  Google Scholar 

  8. Holtz J, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832

    Article  CAS  Google Scholar 

  9. Bardosova M, Dillon FC, Pemble ME, Povey IM, Tredgold RH (2009) Langmuir–Blodgett assembly of colloidal photonic crystals using silica particles prepared without the use of surfactant molecules. J Colloid Interface Sci 333:816–819

    Article  CAS  Google Scholar 

  10. Reculusa S, Ravaine S (2003) Synthesis of colloidal crystals of controllable thickness through the Langmuir–Blodgett technique. Chem Mater 15:598–605

    Article  CAS  Google Scholar 

  11. Lee YL, Du ZC, Lin WX, Yang YM (2006) Monolayer behavior of silica particles at air/water interface: a comparison between chemical and physical modifications of surface. J Colloid Interface Sci 296:233–241

    Article  CAS  Google Scholar 

  12. van Duffel B, Ras RHA, De Schryver FC, Schoonheydt RA (2001) Langmuir–Blodgett deposition and optical diffraction of two dimensional opal. J Mater Chem 11:3333–3336

    Article  Google Scholar 

  13. Gy T, Csempesz F, Kabai-Faix M, Kálmán E, Zs K, Kovács AL, Ramsden JJ, Hórvölgyi Z (2001) Preparation and characterization of surface-modified silica-nanoparticles. Langmuir 17:2683–2687

    Article  Google Scholar 

  14. Szekeres M, Kamalin O, Schoonheydt RA, Wostyn K, Clays K, Persoons A, Dékány I (2002) Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir–Blodgett method. J Mater Chem 12:3268–3274

    Article  CAS  Google Scholar 

  15. Dékány I, Németh J, Szekeres M, Schoonheydt R (2003) Surfacial, liquid sorption and monolayer-forming properties of hydrophilic and hydrophobic Stöber silica particles. Colloid Polym Sci 282:1–6

    Article  Google Scholar 

  16. Szekeres M, Kamalin O, Grobet PG, Schoonheydt RA, Wostyn K, Clays K, Persoons A, Dékány I (2003) Two-dimensional ordering of Stöber silica particles at the air/water interface. Colloids and Surf A 227:77–83

    Article  CAS  Google Scholar 

  17. Reculusa S, Massé P, Ravaine S (2004) Three-dimensional colloidal crystals with a well-defined architecture. J Colloid Interface Sci 279:471–478

    Article  CAS  Google Scholar 

  18. Reculusa S, Ravaine S (2005) Colloidal photonic crystals obtained by the Langmuir–Blodgett technique. Appl Surf Sci 246:409–414

    Article  CAS  Google Scholar 

  19. Massé P, Reculusa S, Ravaine S (2006) Elaboration of photonic crystal heterostructures by the Langmuir–Blodgett method. Colloids and Surf A 284:229–233

    Article  Google Scholar 

  20. Shibata H, Sato M, Watanabe S, Matsumoto M (2009) Self-assembled arrays of silica particles on patterns reflecting the phase-separated structures of mixed Langmuir–Blodgett films. Colloids and Surf A 346:58–60

    Article  CAS  Google Scholar 

  21. Horozov TS, Aveyard R, Clint JH, Binks BP (2003) Order–disorder transition in monolayers of modified monodisperse silica particles at the octane–water interface. Langmuir 19:2822–2829

    Article  CAS  Google Scholar 

  22. Kondo M, Shinozaki K, Bergström L, Mizutani N (1995) Preparation of colloidal monolayers of alkoxylated silica particles at the air–liquid interface. Langmuir 11:394–397

    Article  CAS  Google Scholar 

  23. Hórvölgyi Z, Németh S, Fendler JH (1993) Spreading of hydrophobic silica beads at water–air interface. Colloids and Surf A 71:327–335

    Article  Google Scholar 

  24. McNamee CE, Yamamoto S, Butt H-J, Higashitani K (2011) A straightforward way to form close-packed TiO2 particle monolayers at an air/water interface. Langmuir 27:887–894

    Article  CAS  Google Scholar 

  25. Findlay AD, Thompson DW, Tipping E (1996) The aggregation of silica and haematite particles dispersed in natural water samples. Colloids and Surf A 118:97–105

    Article  CAS  Google Scholar 

  26. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micro size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  27. Ray MA, Jia L (2007) Micropatterning by non-densely packed interfacial colloidal crystals. Adv Mater 19:2020–2022

    Article  CAS  Google Scholar 

  28. Goldenberg LM, Wagner J, Stumpe J, Paulke B-R, Görnitz E (2002) Simple method for the preparation of colloidal particle monolayers at the water/alkane interface. Langmuir 18:5627–5629

    Article  CAS  Google Scholar 

  29. Garbassi F, Balducci L, Chiurlo P, Deiana CL (1995) A study of surface modification of silica using XPS, DRIFT and NMR. Appl Surf Sci 84:145–151

    CAS  Google Scholar 

  30. Christy AA (2010) New insights into the surface functionalities and adsorption evolution of water molecules on silica gel surface: a study by second derivative near infrared spectroscopy. Vib Spectrosc 54:42–49

    Article  CAS  Google Scholar 

  31. Jesionowski T, Krysztafkiewicz A (2002) Preparation of the hydrophilic/hydrophobic silica particles. Colloids and Surf A 207:49–58

    Article  CAS  Google Scholar 

  32. Nawrocki J (1997) The silanol group and its role in liquid chromatography. J Chromatogr A 779:29–71

    Article  CAS  Google Scholar 

  33. Jal PK, Patel S, Mishra BK (2004) Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta 62:1005–1028

    Article  CAS  Google Scholar 

  34. Kim J, Lawler DF (2005) Characteristics of zeta potential distribution in silica particles. Bull Korean Chem Soc 26:1083–1089

    Article  Google Scholar 

  35. Davis JA, James RO, Leckie JO (1978) Surface ionization and complexation at the oxide/water interface I computation of electrical double layer properties in simple electrolytes. J Colloid Interface Sci 63:480–499

    Article  CAS  Google Scholar 

  36. Jesionowski T (2003) Influence of aminosilane surface modification and dyes adsorption on zeta potential of spherical silica particles formed in emulsion system. Colloids and Surf A 222:87–94

    Article  CAS  Google Scholar 

  37. Blute I, Pugh RJ, van de Pas J, Callaghan I (2009) Silica nanoparticle sols part 3: monitoring the state of agglomeration at the air/water interface using the Langmuir–Blodgett technique. J Colloid Interface Sci 336:584–591

    Article  CAS  Google Scholar 

  38. Preuss M, Butt H-J (1999) Direct measurement of forces between particles and bubbles. Int J Miner Process 56:99–115

    Article  CAS  Google Scholar 

  39. Clint JH, Taylor SE (1992) Particle size and interparticle forces of overbased detergents: a Langmuir trough study. Colloids and Surf 65:61–67

    Article  CAS  Google Scholar 

  40. Hunter TN, Wanless EJ, Jameson GJ (2008) Effect of esterically bonded agents on the monolayer structure and foamability of nano-silica. Colloids and Surf A 334:181–190

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Dongguk University Research Fund in 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangkwon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Lee, HB. Effect of pH on monolayer properties of colloidal silica particles at the air/water interface. Colloid Polym Sci 290, 445–455 (2012). https://doi.org/10.1007/s00396-011-2553-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2553-2

Keywords

Navigation