Skip to main content
Log in

Deformation-induced morphology evolution during uniaxial stretching of isotactic polypropylene: effect of temperature

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The effects of draw temperature on the deformation-induced morphology evolution of isotactic polypropylene in terms of crystal orientation, degree of crystallinity, crystal size in the direction normal to chain axis, long spacing, and the deformation behavior at the crystal lattice and lamellae scale were investigated using differential scanning calorimetry, two-dimensional wide-angle X-ray diffraction, and small-angle X-ray scattering, respectively. The results revealed that the thermal behaviors are associated with the deformation-induced morphology evolution, and the morphology evolution is strongly temperature dependent. At low strain, crystal fragmentation takes place at all the draw temperature range studied; at high strain, after crystal fragmentation the draw temperature shows different effects on the morphology evolution: at low temperature (25 °C), fragmentation of the crystal blocks continues; at medium temperatures (80 and 110 °C), the broken crystal blocks remain stable and the unfolded chains and disentangled chains in amorphous region crystallize into crystal blocks with crystal size almost identical to that of the original broken ones; at high temperatures (130 and 140 °C), not only the unfolded chains and disentangled chains in amorphous region crystallize into crystal blocks, but also these small broken crystal blocks melt and recrystallize and the new crystal blocks formed possess larger crystal size than those of the original broken ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Peterlin A (1971) J Mater Sci 6:490–508

    Article  CAS  Google Scholar 

  2. Peterlin A (1987) Colloid Polym Sci 265:357–382

    Article  CAS  Google Scholar 

  3. Peterlin A, Baltá-Calleja FJ (1969) J Appl Phys 40:4238–4242

    Article  CAS  Google Scholar 

  4. Baltá-Calleja FJ, Peterlin A (1969) J Mater Sci 4:722–729

    Article  Google Scholar 

  5. Flory PJ, Yoon DY (1978) Nature 272:226–229

    Article  CAS  Google Scholar 

  6. Li JX, Cheung WL (1998) Polymer 39:6935–6940

    Article  CAS  Google Scholar 

  7. Hedesiu C, Demco DE, Remerie K, Blümich B, Litvinov VM (2008) Macromol Chem Phys 209:734–745

    Article  CAS  Google Scholar 

  8. Jiang Z, Tang Y, Rieger J, Enderle HF, Lilge D, Roth SV, Gehrke R, Wu Z, Li Z, Men Y (2009) Polymer 50:4101–4111

    Article  CAS  Google Scholar 

  9. Men Y, Strobl G (2001) J Macromol Sci Phys 40:775

    Article  Google Scholar 

  10. Men Y, Rieger J, Strobl G (2003) Phys Rev Lett 91:095502

    Article  Google Scholar 

  11. Hiss R, Hobeika S, Lynn C, Strobl G (1999) Macromolecules 32:4390–4403

    Article  CAS  Google Scholar 

  12. Seguela R (2007) E-Polymers. doi: 032

  13. Sakurai T, Nozue Y, Kasahara T, Mizunuma K, Yamaguchi N, Tashiro K, Amemiya Y (2005) Polymer 46:8846–8858

    Article  CAS  Google Scholar 

  14. Tabatabaei SH, Carreau PJ, Ajji A (2009) Polymer 50:3981–3989

    Article  CAS  Google Scholar 

  15. Machado G, Kinast EJ, Scholten JD, Thompson A, Vargas TD, Teixeira SR, Samios D (2009) Eur Polym J 45:700–713

    Article  CAS  Google Scholar 

  16. Fujiyama M, Kitajima Y, Inata H (2002) J Appl Polym Sci 84:2128–2141

    Article  CAS  Google Scholar 

  17. Stoclet G, Seguela R, Lefebvre JM, Li S, Vert M (2011) Macromolecules 44:4961–4969

    Article  CAS  Google Scholar 

  18. Seguela R (2007) Macromol Mater Eng 292:235–244

    Article  CAS  Google Scholar 

  19. Stoclet G, Seguela R, Lefebvre JM, Elkoun S, Vanmansart C (2010) Macromolecules 43:1488–1498

    Article  CAS  Google Scholar 

  20. Stoclet G, Seguela R, Lefebvre JM, Rochas C (2010) Macromolecules 43:7228–7237

    Article  CAS  Google Scholar 

  21. Schneider K (2010) J Polym Sci Polym Phys 48:1574–1586

    Article  CAS  Google Scholar 

  22. Ran SF, Zong XH, Fang DF, Hsiao BS, Chu B, Phillips RA (2001) Macromolecules 34:2569–2578

    Article  CAS  Google Scholar 

  23. Zuo F, Keum JK, Chen XM, Hsiao BS, Chen HY, Lai SY, Wevers R, Li J (2007) Polymer 48:6867–6880

    Article  CAS  Google Scholar 

  24. Ran SF, Zong XH, Fang DF, Hsiao BS, Chu B, Ross R (2000) J Appl Crystallogr 33:1031–1036

    Article  CAS  Google Scholar 

  25. Chu B, Hsiao BS (2001) Chem Rev 101:1727–1761

    Article  CAS  Google Scholar 

  26. Wang D, Shao C, Zhao B, Bai L, Wang X, Yan T, Li J, Pan G, Li L (2010) Macromolecules 43:2406–2412

    Article  CAS  Google Scholar 

  27. Ma Z, Shao C, Wang X, Zhao B, Li X, An H, Yan T, Li Z, Li L (2009) Polymer 50:2706–2715

    Article  CAS  Google Scholar 

  28. Men Y, Rieger J, Lindner P, Enderle HF, Lilge D, Kristen MO, Mihan S, Jiang S (2005) J Phys Chem B 109:16650–16657

    Article  CAS  Google Scholar 

  29. Jiang Z, Tang Y, Men Y, Enderle HF, Lilge D, Roth SV, Gehrke R, Rieger J (2007) Macromolecules 40:7263–7269

    Article  CAS  Google Scholar 

  30. Jiang ZY, Tang YJ, Rieger J, Enderle HF, Lilge D, Roth SV, Gehrke R, Heckmann W, Men YF (2010) Macromolecules 43:4727–4732

    Article  CAS  Google Scholar 

  31. Tang YJ, Jiang ZY, Men YF, An LJ, Enderle HF, Lilge D, Roth SV, Gehrke R, Rieger J (2007) Polymer 48:5125–5132

    Article  CAS  Google Scholar 

  32. Huo H, Jiang S, An L, Feng J (2004) Macromolecules 37:2478–2483

    Article  CAS  Google Scholar 

  33. Phillips RA, Wolkowicz MD (1996) In: Moore EP Jr (ed) Polypropylene handbook. Hanser, Munich, pp 113–176

    Google Scholar 

  34. Samios D, Tokumoto S, Denardin ELG (2005) Macromol Symp 229:179–187

    Article  CAS  Google Scholar 

  35. Hermanns PH, Platzek P (1939) Kolloid Z 88:68–72

    Article  Google Scholar 

  36. Wilchinsky ZW (1960) J Appl Phys 31:1969–1972

    Article  CAS  Google Scholar 

  37. Imai M, Kaji K, Kanaya T (1994) Macromolecules 27:7103–7108

    Article  CAS  Google Scholar 

  38. Wang ZG, Hsiao BS, Srinivas S, Brown GM, Tsou AH, Cheng SZD, Stein RS (2001) Polymer 42:7561–7566

    Article  CAS  Google Scholar 

  39. Tang XG, Bao RY, Yang W, Xie BH, Yang MB, Hou M (2009) Eur Polym J 45:1448–1453

    Article  CAS  Google Scholar 

  40. Shan GF, Yang W, Yang MB, Xie BH, Feng JM, Fu Q (2007) Polymer 48:2958–2968

    Article  CAS  Google Scholar 

  41. Kawakami D, Hsiao BS, Ran SF, Burger C, Fu B, Sics I, Chu B, Kikutani T (2004) Polymer 45:905–918

    Article  CAS  Google Scholar 

  42. Kawakami D, Hsiao BS, Burger C, Ran SF, Avila-Orta C, Sics I, Kikutani T, Jacob KI, Chu B (2005) Macromolecules 38:91–103

    Article  CAS  Google Scholar 

  43. Kawakami D, Ran SF, Burger C, Avila-Orta C, Sics I, Chu B, Hsiao BS, Kikutani T (2006) Macromolecules 39:2909–2920

    Article  CAS  Google Scholar 

  44. Kawakami D, Burger C, Ran S, Avila-Orta C, Sics I, Chu B, Chiao SM, Hsiao BS, Kikutani T (2008) Macromolecules 41:2859–2867

    Article  CAS  Google Scholar 

  45. Samon JM, Schultz JM, Hsiao BS (2000) Polymer 41:2169–2182

    Article  CAS  Google Scholar 

  46. Pluta M, Bartczak Z, Galeski A (2000) Polymer 41:2271–2288

    Article  CAS  Google Scholar 

  47. Poussin L, Bertin YA, Parisot J, Brassy C (1998) Polymer 39:4261–4265

    Article  CAS  Google Scholar 

  48. Liu Y, Kennard CHL, Truss RW, Calos NJ (1997) Polymer 38:2797–2805

    Article  CAS  Google Scholar 

  49. Liu T, Petermann J (2001) Polymer 42:6453–6461

    Article  CAS  Google Scholar 

  50. Röttele A, Thurn-Albrecht T, Sommer JU, Reiter G (2003) Macromolecules 36:1257–1260

    Article  Google Scholar 

  51. Somani RH, Yang L, Zhu L, Hsiao BS (2005) Polymer 46:8587–8623

    Article  CAS  Google Scholar 

  52. Elias M, Machado R, Canevarolo S (2000) J Therm Anal Cal 59:143–155

    Article  CAS  Google Scholar 

  53. Galeski A (2003) Prog Polym Sci 28:1643–1699

    Article  CAS  Google Scholar 

  54. Pawlak A, Galeski A (2010) J Polym Sci Polym Phys 48:1271–1280

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support of National Natural Science Foundation of China (grant nos. 50973074 and 51073110), the Program for New Century Excellent Talents in University (NCET-08-0382), and Fok Ying Tung Education Foundation (grant no. 122022). Thanks also go to Prof. Guo-Qiang Pan and Mr. Li-Hui Wu from National Synchrotron Radiation Laboratory (China) for synchrotron WAXD measurements, to Dr. Chun-Guang Shao, Dr. Guo-Qiang Zheng, and Dr. Ya-Ming Wang from Zhengzhou University (China) for 2D-SAXS measurements, and to Prof. Zhong-Ming Li from College of Polymer Science and Engineering, Sichuan University, for helpful suggestions on WAXD results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, R., Ding, Z., Zhong, G. et al. Deformation-induced morphology evolution during uniaxial stretching of isotactic polypropylene: effect of temperature. Colloid Polym Sci 290, 261–274 (2012). https://doi.org/10.1007/s00396-011-2550-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2550-5

Keywords

Navigation