Skip to main content
Log in

Rapid binding of electrostatically stabilized iron oxide nanoparticles to THP-1 monocytic cells via interaction with glycosaminoglycans

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) with contrast agents that target specific inflammatory components of atherosclerotic lesions has the potential to emerge as promising diagnostic modality for detecting unstable plaques. Since a high content of macrophages and alterations of the extracellular matrix are hallmarks of plaque instability, these structures represent attractive targets for new imaging modalities. In this study, we compared in vitro uptake and binding of electrostatically stabilized citrate-coated very small superparamagnetic iron oxide particles (VSOP) to THP-1 cells with sterically stabilized carboxydextran-coated Resovist®. Uptake of VSOP in both THP-1 monocytic cells and THP-derived macrophages (THP-MΦ) was more efficient compared to Resovist® without inducing cytotoxicity or modifying normal cellular functions (no changes in levels of reactive oxygen species, caspase-3 activity, proliferation, cytokine production). Importantly, VSOP bound with high affinity to the cell surface and to apoptotic membrane vesicles. Inhibition of glycosaminoglycan (GAG) synthesis by glucose deprivation in THP-MΦ was associated with a significant reduction of VSOP attachment suggesting that the strong interaction of VSOP with the membranes of cells and apoptotic vesicles occurs via binding to negatively charged GAGs. These in vitro experiments show that VSOP-enhanced MRI may represent a new imaging approach for visualizing high-risk plaques on the basis of targeting pathologically increased GAGs or apoptotic membrane vesicles in atherosclerotic lesions. VSOP should be investigated further in appropriate in vivo experiments to characterize accumulation in unstable plaque.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cechowska-Pasko M, Bankowski E (2010) Glucose deficiency inhibits glycosaminoglycans synthesis in fibroblast cultures. Biochimie 92:806–813. doi:10.1016/j.biochi.2010.02.029

    Article  PubMed  CAS  Google Scholar 

  2. Howarth SP, Tang TY, Trivedi R, Weerakkody R, King-Im J, Gaunt ME, Boyle JR, Li ZY, Miller SR, Graves MJ, Gillard JH (2009) Utility of USPIO-enhanced MR imaging to identify inflammation and the fibrous cap: a comparison of symptomatic and asymptomatic individuals. Eur J Radiol 70:555–560. doi:10.1016/j.ejrad.2008.01.047

    Article  PubMed  CAS  Google Scholar 

  3. Hu F, Neoh KG, Cen L, Kang ET (2006) Cellular response to magnetic nanoparticles “PEGylated” via surface-initiated atom transfer radical polymerization. Biomacromolecules 7:809–816. doi:10.1021/bm050870e

    Article  PubMed  CAS  Google Scholar 

  4. Klein NJ, Shennan GI, Heyderman RS, Levin M (1992) Alteration in glycosaminoglycan metabolism and surface charge on human umbilical vein endothelial cells induced by cytokines, endotoxin and neutrophils. J Cell Sci 102:821–832

    PubMed  CAS  Google Scholar 

  5. Kockx MM (1998) Apoptosis in the atherosclerotic plaque: quantitative and qualitative aspects. Arterioscler Thromb Vasc Biol 18:1519–1522. doi:10.1161/01.ATV.18.10.1519

    Article  PubMed  CAS  Google Scholar 

  6. Kolodgie FD, Burke AP, Farb A, Weber DK, Kutys R, Wight TN, Virmani R (2002) Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol 22:1642–1648. doi:10.1161/01.ATV.0000034021.92658.4C

    Article  PubMed  CAS  Google Scholar 

  7. Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M, Frederik PM, Daemen MJ, van Engelshoven JM (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458. doi:10.1161/01.CIR.0000068315.98705.CC

    Article  PubMed  CAS  Google Scholar 

  8. Kresse M, Lawaczeck R, Pfefferer D (1995) Nanocrystalline magnetic iron oxide particles-method for preparation and use in medical diagnostics and therapy. US Patent 5427767

  9. Krpetic Z, Nativo P, Prior IA, Brust M (2011) Acrylate-facilitated cellular uptake of gold nanoparticles. Small 7:1982–1986. doi:10.1002/smll.201100462

    Article  PubMed  CAS  Google Scholar 

  10. Kruse R, Merten M, Yoshida K, Schmidt A, Völker W, Buddecke E (1996) Cholesterol-dependent changes of glycosaminoglycan pattern in human aorta. Basic Res Cardiol 91:344–352

    PubMed  CAS  Google Scholar 

  11. Lewis CE, McGee JO (1992) The natural immune system: the macrophage. Oxford University Press, New York

    Google Scholar 

  12. Libby P, Geng YJ, Sukhova GK, Simon DI, Lee RT (1997) Molecular determinants of atherosclerotic plaque vulnerability. Ann N Y Acad Sci 811:134–142. doi:10.1111/j.1749-6632

    Article  PubMed  CAS  Google Scholar 

  13. Makatsori E, Lamari FN, Theocharis AD, Anagnostides S, Hjerpe A, Tsegenidis T, Karamanos N (2003) Large matrix proteoglycans, versican and perlecan, are expressed and secreted by human leukemic monocytes. Anticancer Res 23:3303–3309

    PubMed  CAS  Google Scholar 

  14. Makowski MR, Varma G, Wiethoff AJ, Smith A, Mattock K, Jansen CH, Warley A, Taupitz M, Schaeffter T, Botnar RM (2011) Noninvasive assessment of atherosclerotic plaque progression in ApoE-/- mice using susceptibility gradient mapping. Circ Cardiovasc Imaging 3:295–303. doi:10.1161/CIRCIMAGING.110.957209

    Article  Google Scholar 

  15. Martinet W, Schrijvers DM, De Meyer GR (2012) Molecular and cellular mechanisms of macrophage survival in atherosclerosis. Basic Res Cardiol 107:297. doi:10.1007/s00395-012-0297-x

    Article  PubMed  Google Scholar 

  16. Martinet W, Schrijvers DM, De Meyer GR (2011) Necrotic cell death in atherosclerosis. Basic Res Cardiol 106:749–760. doi:10.1007/s00395-011-0192-x

    Article  PubMed  CAS  Google Scholar 

  17. Montoro-García S, Shantsila E, Marín F, Blann A, Lip GY (2011) Circulating microparticles: new insights into the biochemical basis of microparticle release and activity. Basic Res Cardiol 106:911–923. doi:10.1007/s00395-011-0198-4

    Article  PubMed  Google Scholar 

  18. Meiners S, Ludwig A, Lorenz M, Dreger H, Baumann G, Stangl V, Stangl K (2006) Nontoxic proteasome inhibition activates a protective antioxidant defense response in endothelial cells. Free Radic Biol Med 40:2232–2241. doi:10.1016/j.freeradbiomed.2006.03.003

    Article  PubMed  CAS  Google Scholar 

  19. Muller K, Skepper JN, Tang TY, Graves MJ, Patterson AJ, Corot C, Lancelot E, Thompson PW, Brown AP, Gillard JH (2008) Atorvastatin and uptake of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) in human monocyte-macrophages: implications for magnetic resonance imaging. Biomaterials 29:2656–2662. doi:10.1016/j.biomaterials.2008.03.006

    Article  PubMed  CAS  Google Scholar 

  20. Pilgrimm H (2007) Aqueous dispersions of superparamagnetic single domain particles production and use thereof for diagnosis and therapy. Patent PCT/EP2006/069453[WO/2007/065935]

  21. Raynal I, Prigent P, Peyramaure S, Najid A, Rebuzzi C, Corot C (2004) Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Invest Radiol 39:56–63. doi:10.1097/01.rli.0000101027.57021.28

    Article  PubMed  CAS  Google Scholar 

  22. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809. doi:10.1038/362801a0

    Article  PubMed  CAS  Google Scholar 

  23. Schmitz SA, Taupitz M, Wagner S, Wolf KJ, Beyersdorff D, Hamm B (2001) Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles. J Magn Reson Imaging 14:355–361. doi:10.1002/jmri.1194

    Article  PubMed  CAS  Google Scholar 

  24. Schmitz SA, Winterhalter S, Schiffler S, Gust R, Wagner S, Kresse M, Coupland SE, Semmler W, Wolf KJ (2001) USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits. Radiology 221:237–243. doi:10.1148/radiol.2211001632

    Article  PubMed  CAS  Google Scholar 

  25. Sigovan M, Boussel L, Sulaiman A, Sappey-Marinier D, Alsaid H, Desbleds-Mansard C, Ibarrola D, Gamondes D, Corot C, Lancelot E, Raynaud JS, Vives V, Lacledere C, Violas X, Douek PC, Canet-Soulas E (2009) Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology 252:401–409. doi:10.1148/radiol.2522081484

    Article  PubMed  Google Scholar 

  26. Soenen SJ, Himmelreich U, Nuytten N, De Cuyper M (2011) Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials 32:195–205. doi:10.1016/j.biomaterials.2010.08.075

    Article  PubMed  CAS  Google Scholar 

  27. Soenen SJ, Illyes E, Vercauteren D, Braeckmans K, Majer Z, De Smedt SC, De Cuyper M (2009) The role of nanoparticle concentration-dependent induction of cellular stress in the internalization of non-toxic cationic magnetoliposomes. Biomaterials 30:6803–6813. doi:10.1016/j.biomaterials.2009.08.050

    Article  PubMed  CAS  Google Scholar 

  28. Soenen SJ, Nuytten N, De Meyer SF, De Smedt SC, De Cuyper M (2010) High intracellular iron oxide nanoparticle concentrations affect cellular cytoskeleton and focal adhesion kinase-mediated signaling. Small 6:832–842. doi:10.1002/smll.200902084

    Article  PubMed  CAS  Google Scholar 

  29. Sosnovik DE, Nahrendorf M, Weissleder R (2008) Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol 103:122–130. doi:10.1007/s00395-008-0710-7

    Article  PubMed  CAS  Google Scholar 

  30. Tang TY, Howarth SP, Miller SR, Graves MJ, Patterson AJ, U-King-Im JM, Li ZY, Walsh SR, Brown AP, Kirkpatrick PJ, Warburton EA, Hayes PD, Varty K, Boyle JR, Gaunt ME, Zalewski A, Gillard JH (2009) The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol 53:2039–2050. doi:10.1016/j.jacc.2009.03.018

    Article  PubMed  CAS  Google Scholar 

  31. Tang TY, Muller KH, Graves MJ, Li ZY, Walsh SR, Young V, Sadat U, Howarth SP, Gillard JH (2009) Iron oxide particles for atheroma imaging. Arterioscler Thromb Vasc Biol 29:1001–1008. doi:10.1161/ATVBAHA.108.165514

    Article  PubMed  CAS  Google Scholar 

  32. Taupitz M, Wagner S, Schnorr J, Kravec I, Pilgrimm H, Bergmann-Fritsch H, Hamm B (2004) Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest Radiol 39:394–405. doi:10.1097/01.rli.0000129472.45832.b0

    Article  PubMed  CAS  Google Scholar 

  33. Trivedi RA, Mallawarachi C, U-King-Im JM, Graves MJ, Horsley J, Goddard MJ, Brown A, Wang L, Kirkpatrick PJ, Brown J, Gillard JH (2006) Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol 26:1601–1606. doi:10.1161/01.ATV.0000222920.59760.df

    Article  PubMed  CAS  Google Scholar 

  34. Trivedi RA, U-King-Im JM, Graves MJ, Kirkpatrick PJ, Gillard JH (2004) Noninvasive imaging of carotid plaque inflammation. Neurology 63:187–188. doi:10.1212/01.WNL.0000132962.12841.1D

    Article  PubMed  CAS  Google Scholar 

  35. Van Herck JL, De Meyer GR, Martinet W, Salgado RA, Shivalkar B, De Mondt R, Van De Ven H, Ludwig A, Van Der Veken P, Van Vaeck L, Bult H, Herman AG, Vrints CJ (2010) Multi-slice computed tomography with N1177 identifies ruptured atherosclerotic plaques in rabbits. Basic Res Cardiol 105:51–59. doi:10.1007/s00395-009-0052-0

    Article  PubMed  Google Scholar 

  36. Vats N, Wilhelm C, Rautou PE, Poirier-Quinot M, Pechoux C, Devue C, Boulanger CM, Gazeau F (2010) Magnetic tagging of cell-derived microparticles: new prospects for imaging and manipulation of these mediators of biological information. Nanomedicine (Lond) 5:727–738. doi:10.2217/nnm.10.44

    Article  CAS  Google Scholar 

  37. Wagner M, Wagner S, Schnorr J, Schellenberger E, Kivelitz D, Krug L, Dewey M, Laule M, Hamm B, Taupitz M (2011) Coronary MR angiography using citrate-coated very small superparamagnetic iron oxide particles as blood-pool contrast agent: initial experience in humans. J Magn Reson Imaging 34:816–823. doi:10.1002/jmri.22683

    Article  PubMed  Google Scholar 

  38. Wagner S, Schnorr J, Pilgrimm H, Hamm B, Taupitz M (2002) Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization. Invest Radiol 37:167–177

    Article  PubMed  CAS  Google Scholar 

  39. Whiteman P (1973) The quantitative measurement of Alcian Blue-glycosaminoglycan complexes. Biochem J 131:343–350

    PubMed  CAS  Google Scholar 

  40. Yamagata T, Saito H, Habuchi O, Suzuki S (1968) Purification and properties of bacterial chondroitinases and chondrosulfatases. J Biol Chem 243:1523–1535

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft—within the Clinical Research Unit KFO 213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje Ludwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludwig, A., Poller, W.C., Westphal, K. et al. Rapid binding of electrostatically stabilized iron oxide nanoparticles to THP-1 monocytic cells via interaction with glycosaminoglycans. Basic Res Cardiol 108, 328 (2013). https://doi.org/10.1007/s00395-013-0328-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-013-0328-2

Keywords

Navigation