Skip to main content

Advertisement

Log in

The bacterial instrument as a promising therapy for colon cancer

  • Review
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Objective

Colon cancer is a great health concern worldwide, as it is the second leading cause of cancer-related death. Conventional treatment of cancer such as surgery, radiotherapy, and chemotherapy are faced with limitations and side effects. Therefore, strategies for the treatment of cancer need to be modified or new strategies replacing the old one.

Aims

The aim of this study is to review the role of bacteria or their products (such as peptides, bacteriocins, and toxins) as a therapeutic agent for colon cancer.

Results and conclusion

Recently, the therapeutic role of bacteria and their products in colon cancer treatment holds promise as emerging novel anti-cancer agents. Unlike the conventional treatments, targeted therapy based on the use of bacteria that are able to directly target tumor cells without affecting normal cells is evolving as an alternative strategy. Moreover, several bacterial species were used in live, attenuated or genetically modified that are able to multiply selectively in tumors and inhibiting their growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    PubMed  Google Scholar 

  2. Cao C, Yan TD, Black D, Morris DL (2009) A systematic review and meta-analysis of cytoreductive surgery with perioperative intraperitoneal chemotherapy for peritoneal carcinomatosis of colorectal origin. Ann Surg Oncol 16(8):2152–2165

    Article  PubMed  Google Scholar 

  3. Lemoine L, Sugarbaker P, Van der Speeten K (2016) Pathophysiology of colorectal peritoneal carcinomatosis: role of the peritoneum. World J Gastroenterol 22(34):7692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sugarbaker PH (2016) Improving oncologic outcomes for colorectal cancer at high risk for local–regional recurrence with novel surgical techniques. Expert Rev Gastroenterol Hepatol 10(2):205–213

    Article  CAS  PubMed  Google Scholar 

  5. Symeonidis D, Christodoulidis G, Koukoulis G, Spyridakis M, Tepetes K (2011) Colorectal cancer surgery in the elderly: limitations and drawbacks. Tech Coloproctol 15(1):47–50

    Article  Google Scholar 

  6. Groza D, Gehrig S, Kudela P, Holcmann M, Pirker C, Dinhof C et al (2018) Bacterial ghosts as adjuvant to oxaliplatin chemotherapy in colorectal carcinomatosis. OncoImmunology. 7(5):e1424676

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B et al (2017) Combination therapy in combating cancer. Oncotarget. 8(23):38022

    Article  PubMed Central  Google Scholar 

  8. Zlotta AR, Fleshner NE, Jewett MA (2009) The management of BCG failure in non-muscle-invasive bladder cancer: an update. Can Urol Assoc J 3(6 Suppl 4):S199

    PubMed  PubMed Central  Google Scholar 

  9. Gontero P, Bohle A, Malmstrom P-U, O’Donnell MA, Oderda M, Sylvester R et al (2010) The role of bacillus Calmette-Guérin in the treatment of non–muscle-invasive bladder cancer. Eur Urol 57(3):410–429

    Article  PubMed  Google Scholar 

  10. Gay LJ, Mitrou PN, Keen J, Bowman R, Naguib A, Cooke J, Kuhnle GG, Burns PA, Luben R, Lentjes M, Khaw KT, Ball RY, Ibrahim AE, Arends MJ (2012) Dietary, lifestyle and clinicopathological factors associated with APC mutations and promoter methylation in colorectal cancers from the EPIC-Norfolk study. J Pathol 228(3):405–415

    Article  CAS  PubMed  Google Scholar 

  11. Sears CL, Garrett WS (2014) Microbes, microbiota, and colon cancer. Cell Host Microbe 15(3):317–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shah P, Swiatlo E (2008) A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol 68(1):4–16

    Article  CAS  PubMed  Google Scholar 

  13. Kristjansson SR, Nesbakken A, Jordhøy MS, Skovlund E, Audisio RA, Johannessen H-O et al (2010) Comprehensive geriatric assessment can predict complications in elderly patients after elective surgery for colorectal cancer: a prospective observational cohort study. Crit Rev Oncol Hematol 76(3):208–217

    Article  PubMed  Google Scholar 

  14. Marshall JL (2008) Managing potentially resectable metastatic colon cancer. Gastrointest Cancer Res 2(4 Suppl 2):S23

    PubMed  PubMed Central  Google Scholar 

  15. Roberts NJ, Zhang L, Janku F, Collins A, Bai R-Y, Staedtke V et al (2014) Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Sci Transl Med 6(249):249ra111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fujimori M (2006) Genetically engineered bifidobacterium as a drug delivery system for systemic therapy of metastatic breast cancer patients. Breast Cancer 13(1):27–31

    Article  PubMed  Google Scholar 

  17. Zhao M, Yang M, Ma H, Li X, Tan X, Li S, Yang Z, Hoffman RM (2006) Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res 66(15):7647–7652

    Article  CAS  PubMed  Google Scholar 

  18. Danino T, Prindle A, Hasty J, Bhatia S Measuring growth and gene expression dynamics of tumor-targeted S. typhimurium bacteria. J Vis Exp 2013(77):e50540

  19. Yang S-C, Lin C-H, Sung CT, Fang J-Y (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 5:241

    PubMed  PubMed Central  Google Scholar 

  20. Villarante KI, Elegado FB, Iwatani S, Zendo T, Sonomoto K, de Guzman EE (2011) Purification, characterization and in vitro cytotoxicity of the bacteriocin from Pediococcus acidilactici K2a2-3 against human colon adenocarcinoma (HT29) and human cervical carcinoma (HeLa) cells. World J Microbiol Biotechnol 27:975–980

    Article  CAS  Google Scholar 

  21. Kumar B, Balgir PP, Kaur B, Mittu B, Chauhan A (2012) In vitro cytotoxicityofnativeandrec-pediocincp2againstcancercelllines: a comparativestudy. Open Access Sci Rep 1:316–321

    Google Scholar 

  22. Nam E, Joo KR, Kamarajan P, Miao D, Kapila YL (2012) Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med 1(3):295–305

    Article  CAS  Google Scholar 

  23. Norouzi ZSA, Halabian R, Fahimi H (2018) Nisin, a potent bacteriocin and anti-bacterial peptide, attenuates expression of metastatic genes in colorectal cancer cell lines. Microb Pathog 123:183–189

    Article  CAS  PubMed  Google Scholar 

  24. Kaur SKS (2015) Bacteriocins as potential anticancer agents. Front Pharmacol 6:272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chumchalova JŠJ (2003) Human tumor cells are selectively inhibited by colicins. Folia Microbiol 48(1):111–115

    Article  CAS  Google Scholar 

  26. Giuliani A, Pirri G, Nicoletto S (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Open Life Sci 2(1):1–33

    Article  CAS  Google Scholar 

  27. Cho JY, Williams PG, Kwon HC, Jensen PRM, Fenical W (2007) Lucentamycins A-D, cytotoxic peptides from the marine-derived actinomycete Nocardiopsis lucentensis. J Nat Prod 70:1321–1328

    Article  CAS  PubMed  Google Scholar 

  28. Zhang HL, Hua HM, Pei YH, Yao XS (2004) Three new cytotoxic cyclic acylpeptides from marine Bacillus sp. Chem Pharm Bull 52:1029–1030

    Article  CAS  Google Scholar 

  29. Yamada T, Goto M, Punj V, Zaborina O, Chen ML, Kimbara K, Majumdar D, Cunningham E, Das Gupta TK, Ananda M (2002) Chakrabarty. Bacterial redox protein azurin, tumor suppressor protein p53, and regression of cancer. PNAS 99:14098–14103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Asolkar RN, Freel KC, Jensen PR, Fenical W, Kondratyuk TP, Park E-J, Pezzuto JM (2009) Arenamides A-C, cytotoxic NF B inhibitors from the marine actinomycete Salinispora arenicola. J Nat Prod 72:396–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matsuo Y, Kanoh K, Yamori T, Kasai H, Katsuta A, Adachi K, Shin-Ya K, Shizuri Y (2007) Urukthapelstatin A, a novel cytotoxic substance from marine-derived Mechercharimyces asporophorigenens YM11-542. I. Fermentation, isolation and biological activities. J Antibiot 60:251–255

    Article  CAS  Google Scholar 

  32. Jia L, Gorman GS, Coward LU, Noker PE, McCormick D, Horn TL, Harder JB, Muzzio M, Prabhakar B, Ganesh B, Das Gupta TK, Beattie CW (2011) Preclinical pharmacokinetics, metabolism, and toxicity of azurin-p28 (NSC745104) a peptide inhibitor of p53 ubiquitination. Cancer Chemother Pharmacol 68:513–524

    Article  CAS  PubMed  Google Scholar 

  33. Mehta RR, Yamada T, Taylor BN (2011) A cell penetrating peptide derived from azurin inhibits angiogenesis and tumor growth by inhibiting phosphorylation of VEGFR-2, FAK and Akt. Angiogenesis 14(3):355–369

    Article  CAS  PubMed  Google Scholar 

  34. Lulla RR, Goldman S, Yamada T, Beattie CW, Bressler L, Pacini M, Pollack PGF IF, Packer RJ, Dunkel IJ, Dhall G, Wu S, JMB AO, Fouladi M (2016) Phase 1 trial of p28 (NSC745104), a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in pediatric patients with recurrent or progressive central nervous system tumors: a pediatric brain tumor consortium study. Neuro-Oncology. 18(9):1319–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Karpi?ski T (2012) New peptide (Entap) with anti-proliferative activity produced by bacteria of Enterococcus genus: habilitation thesis. Scientific Publisher of Poznań University of Medical

  36. Karpiński T, S A, Gamian A (2013) New enterococcal anticancer peptide. 23rd European Congress of Clinical Microbiology and Infectious Diseases Berlin; Germany

  37. Um SCT, Kim H, Kim BY, Kim S-H, Lee SK (2013) Ohmyungsamycins A and B: cytotoxic and antimicrobial cyclic peptides produced by Streptomyces sp. from a volcanic island. J Org Chem 78(24):12321–12329

    Article  CAS  PubMed  Google Scholar 

  38. Martarelli D, Pompei P, Mazzoni G (2009) Inhibition of adrenocortical carcinoma by diphtheria toxin mutant CRM197. Chemotherapy. 55:425–432

    Article  CAS  PubMed  Google Scholar 

  39. Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ (2006) Immunotoxin therapy of cancer. Nat Rev Cancer 6(7):559–565

    Article  CAS  PubMed  Google Scholar 

  40. Gao Z, McClane BA (2012) Use of Clostridium perfringens enterotoxin and the enterotoxin receptor-binding domain (C-CPE) for cancer treatment: opportunities and challenges. J Toxicol 2012

  41. Holmes R (2000) Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis 181:156–167

    Article  Google Scholar 

  42. Murphy J (2011) Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins 3:294–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vallera DA, Li C, Jin N, Panoskaltsis-Mortari A, Hall WA (2002) Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J Natl Cancer Inst 94:597–606

    Article  CAS  PubMed  Google Scholar 

  44. Lutz MB, Baur AS, Schuler-Thurner B, Schuler G (2014) Immunogenic and tolerogenic effects of the chimeric IL-2-diphtheria toxin cytocidal agent Ontak on CD25+ cells. Oncoimmunology. 3:e28223

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lewis DJ, Dao H Jr, Nagarajan P, Duvic M (2017) Primary cutaneous anaplastic large-cell lymphoma: complete remission for 13 years after denileukin diftitox. JAAD Case Rep 3:501–504

    Article  PubMed  PubMed Central  Google Scholar 

  46. Karmali MA, Petric M, Lim C, Fleming PC, Arbus GS, Lior H (1985) The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. J Infect Dis 151:775–782

    Article  CAS  PubMed  Google Scholar 

  47. Obrig TG, Moran TP, Brown JE (1987) The mode of action of Shiga toxin on peptide elongation of eukaryotic protein synthesis. Biochem J 244:287–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bhattacharjee RNPK, Uematsu S, Okada K, Hoshino K, Takeda K, Takeuchi O, Akira S, Iida T, Honda T (2005) Escherichia coli verotoxin 1 mediates apoptosis in human HCT116 colon cancer cells by inducing overexpression of the GADD family of genes and S phase arrest. FEBS Lett 579(29):6604–6610

    Article  CAS  PubMed  Google Scholar 

  49. Jurcic JG (2000) Antibody immunotherapy for leukemia. Curr Oncol Rep 2(2):114–122

    Article  CAS  PubMed  Google Scholar 

  50. Margolin K, Gordon M, Holmgren E, Gaudreault J, Novotny W, Fyfe G et al (2001) Phase Ib trial of intravenous recombinant humanized monoclonal antibody to vascular endothelial growth factor in combination with chemotherapy in patients with advanced cancer: pharmacologic and long-term safety data. J Clin Oncol 19(3):851–856

    Article  CAS  PubMed  Google Scholar 

  51. FitzGerald DJKR, Wilson W, Squires D, Pastan I (2004) Recombinant immunotoxins for treating cancer. Int J Med Microbiol 293:577–582

    Article  CAS  PubMed  Google Scholar 

  52. Schrama DRR, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159

    Article  CAS  PubMed  Google Scholar 

  53. Kreitman RJ (1997) Getting plant toxins to fuse. Leuk Res 21:997–999

    Article  CAS  PubMed  Google Scholar 

  54. Van Ness BGHJ, Bodley JW (1980) ADP-ribosylation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products. J Biol Chem 255:10710–10716

    PubMed  Google Scholar 

  55. Bachran CSM, Bachran D (2007) Quantification of diphtheria toxin mediated ADP-ribosylation in a solid-phase assay. Clin Chem 53:1676–1683

    Article  CAS  PubMed  Google Scholar 

  56. Shapira S, Shapira A, Starr A, Kazanov D, Kraus S, Benhar I et al (2011) An immunoconjugate of anti-CD24 and Pseudomonas exotoxin selectively kills human colorectal tumors in mice. Gastroenterology. 140(3):935–946

    Article  CAS  PubMed  Google Scholar 

  57. Ding L, Lu Z, Lu Q, Chen Y-H (2013) The claudin family of proteins in human malignancy: a clinical perspective. Cancer Manag Res 5:367

    PubMed  PubMed Central  Google Scholar 

  58. Tsutsumi K, Sato N, Tanabe R, Mizumoto K, Morimatsu K, Kayashima T et al (2012) Claudin-4 expression predicts survival in pancreatic ductal adenocarcinoma. Ann Surg Oncol 19(3):491–499

    Article  Google Scholar 

  59. Soini Y (2005) Expression of claudins 1, 2, 3, 4, 5 and 7 in various types of tumours. Histopathology. 46(5):551–560

    Article  CAS  PubMed  Google Scholar 

  60. Tabariès S, Siegel P (2017) The role of claudins in cancer metastasis. Oncogene. 36(9):1176–1190

    Article  CAS  PubMed  Google Scholar 

  61. Santin AD, Bellone S, Marizzoni M, Palmieri M, Siegel ER, McKenney JK et al (2007) Overexpression of claudin-3 and claudin-4 receptors in uterine serous papillary carcinoma: novel targets for a type-specific therapy using Clostridium perfringens enterotoxin (CPE). Cancer 109(7):1312–1322

    Article  CAS  PubMed  Google Scholar 

  62. Pahle J, Menzel L, Niesler N, Kobelt D, Aumann J, Rivera M, Walther W (2017) Rapid eradication of colon carcinoma by Clostridium perfringens Enterotoxin suicidal gene therapy. BMC Cancer 17(1):129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Khan SA, Everest P, Servos S (1998) A lethal role for lipid A in Salmonella infections. Mol Microbiol 29:571–579

    Article  CAS  PubMed  Google Scholar 

  64. Clairmont C, Lee KC, Pike J (2000) Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J Infect Dis 181:1996–2002

    Article  CAS  PubMed  Google Scholar 

  65. Jesenberger V, Procyk KJ, Yuan J (2000) Salmonella-induced caspase-2 activation in macrophages: a novel mechanism in pathogenmediated apoptosis. J Exp 192:1035–1045

    Article  CAS  Google Scholar 

  66. J-JMa JHZ (2016) Targeted cancer therapy using engineered Salmonella typhimurium. Chonnam Med J 52(3):173–184

    Article  CAS  Google Scholar 

  67. Wang CZKR, Eisenstark A (2016) Strains, mechanism, and perspective: Salmonella-based cancer therapy. Int J Microbiol 2016:5678702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gedde MM, Higgins DE, Tilney LG, Portnoy DA (2000) Role of listeriolysin O in cell-to-cell spread of Listeria monocytogenes. Infect Immun 68:999–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gunn GRZA, Peters C, Pan ZK, Wu TC, Paterson Y (2001) Induce regression of established tumors immunity that correlates with their ability induce qualitatively different T cell human papilloma Virus-16 (HPV-16) E7 that express different molecular forms of two Listeria monocytogenes vaccine vectors immortalized by HPV-16. J Immunol 167(11):6471–6479

    Article  CAS  PubMed  Google Scholar 

  70. Shahabi V, Seavey MM, Maciag PC, Rivera S, Wallec A (2011) Development of a live and highly attenuated Listeria monocytogenes-based vaccine for the treatment of Her2/neu-overexpressing cancers in human. Cancer Gene Ther 18:53–62

    Article  CAS  PubMed  Google Scholar 

  71. Singh R, Dominiecki ME, Jaffee EM, Paterson Y (2005) Fusion to Listeriolysin O and delivery by Listeria monocytogenes enhances the immunogenicity of HER-2/neu and reveals subdominant epitopes in the FVB/N mouse. J Immunol 175:3663–3673

    Article  CAS  PubMed  Google Scholar 

  72. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103(42):15611–15616

    Article  PubMed  PubMed Central  Google Scholar 

  73. O’mahony LFM, O’halloran S, Murphy L, Kiely B, Fitzgibbon J, Lee G, O’sullivan G, Shanahan F, Collins J (2001) Probiotic impact on microbial flora, inflammation and tumour development in IL-10 knockout mice. Aliment Pharmacol Ther 15:1219–1225

    Article  PubMed  Google Scholar 

  74. Zhu YMLT, Jobin C, Young HA (2011) Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett 309:119–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Agah S, Alizadeh AM, Mosavi M, Ranji P, Khavari-Daneshvar H, Ghasemian F et al (2018) More protection of Lactobacillus acidophilus than Bifidobacterium bifidum probiotics on azoxymethane-induced mouse colon cancer. Probiotics Antimicrob Proteins:1–8

  76. Sakatani A, Fujiya M, Ueno N, Kashima S, Sasajima J, Moriichi K et al (2016) Polyphosphate derived from Lactobacillus brevis inhibits colon cancer progression through induction of cell apoptosis. Anticancer Res 36(2):591–598

    CAS  PubMed  Google Scholar 

  77. Jacouton E, Chain F, Sokol H, Langella P, Bermudez-Humaran LG (2017) Probiotic strain Lactobacillus casei BL23 prevents colitis-associated colorectal cancer. Front Immunol 8:1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen M-C, Desiere F, Bork P, Delley M (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99(22):14422–14427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Choi SS, Kang BY, Chung MJ, Kim SD, Park SH, Kim JS, Kang CY, Ha NJ (2005) Safety assessment of potential lactic acid bacteria Bifidobacterium longum SPM1205 isolated from healthy Koreans. J Microbiol 43:493–498

    CAS  PubMed  Google Scholar 

  80. Reddy BS, Wyn E (1977) Metabolic epidemiology of colorectal cancer: fecal bile acids and neutral steroids in colon cancer patients with adenomatous polyps. Cancer Chemother Pharmacol 39:2533–2539

    CAS  Google Scholar 

  81. Lee DK, Jang S, Kim MJ, Kim JH, Chung MJ, Kim KJ et al (2008) Anti-proliferative effects of Bifidobacterium adolescentis SPM0212 extract on human colon cancer cell lines. BMC Cancer 8(1):310

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kim Y, Lee D, Kim D, Cho J, Yang J, Chung M et al (2008) Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212. Arch Pharm Res 31(4):468

    Article  CAS  PubMed  Google Scholar 

  83. Johnstone SA, Gelmon K, Mayer LD, Hancock RE, Bally MB (2000) In vitro characterization of the anticancer activity of membrane-active cationic peptides. I. Peptide-mediated cytotoxicity and peptide-enhanced cytotoxic activity of doxorubicin against wild-type and p-glycoprotein over-expressing tumor cell lines. Anticancer Drug Des 15(2):151–160

    CAS  PubMed  Google Scholar 

  84. Riedl S, Zweytick D, Lohner K (2011) Membrane-active host defense peptides–challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids 164(8):766–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tørfoss V, Isaksson J, Ausbacher D, Brandsdal BO, Flaten GE, Anderssen T, Cavalcanti-Jacobsen Cde A, Havelkova M, Nguyen LT, Vogel HJ, Strøm MB (2012) Improved anticancer potency by head-to-tail cyclization of short cationic anticancer peptides containing a lipophilic β2, 2-amino acid. J Pept Sci 18(10):609–619

    Article  CAS  PubMed  Google Scholar 

  86. Hu J, Chen C, Zhang S, Zhao X, Xu H, Zhao X et al (2011) Designed antimicrobial and antitumor peptides with high selectivity. Biomacromolecules. 12(11):3839–3843

    Article  CAS  PubMed  Google Scholar 

  87. Chen J, Xu X-M, Underhill CB, Yang S, Wang L, Chen Y et al (2005) Tachyplesin activates the classic complement pathway to kill tumor cells. Cancer Res 65(11):4614–4622

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Soleimanpour.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghoubi, A., Khazaei, M., Avan, A. et al. The bacterial instrument as a promising therapy for colon cancer. Int J Colorectal Dis 35, 595–606 (2020). https://doi.org/10.1007/s00384-020-03535-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-020-03535-9

Keywords

Navigation