Skip to main content
Log in

Adamantinomatous craniopharyngioma in the molecular age and the potential of targeted therapies: a review

  • Invited Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Pediatric adamantinomatous craniopharyngiomas (ACPs) are histologically benign brain tumors that often follow an aggressive clinical course. Arising in the sellar/suprasellar region, they grow in close proximity to critical neurological and vascular structures and can result in significant neuroendocrine morbidity. First-line treatment often involves surgical resection with or without radiotherapy and has been associated with significant morbidity and poor quality of life outcomes. As a result, the discovery of alternative effective and safe treatments is clearly desirable. In recent years, laboratory studies have harnessed sophisticated techniques to identify the upregulation of several markers that may represent potential therapeutic targets. These targets include IL-6, PD1/PD-L1, MEK, IDO-1, and others. Agents that target these pathways exist, and there is an opportunity to investigate their potential efficacy in the treatment of ACP. Trials investigating some of these agents as monotherapy and in combination for the treatment of pediatric ACP are underway or in development. If positive, these trials may result in a paradigm shift in treatment that will hopefully result in reduced morbidity and better outcomes for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zacharia BE, Bruce SS, Goldstein H, Malone HR, Neugut AI, Bruce JN (2012) Incidence, treatment and survival of patients with craniopharyngioma in the surveillance, epidemiology and end results program. Neuro-Oncology 14(8):1070–1078

    PubMed  PubMed Central  Google Scholar 

  2. Müller HL (2019) Childhood-onset craniopharyngioma: state of the art of care in 2018. Eur J Endocrinol 180:159–174

    Google Scholar 

  3. Müller HL (2014) Craniopharyngioma. Endocr Rev 35:513–543

    PubMed  Google Scholar 

  4. Hankinson TC, Fields EC, Torok MR, Beaty BL, Handler MH, Foreman NK, O'neill BR, Liu AK (2012) Limited utility despite accuracy of the national SEER dataset for the study of craniopharyngioma. J Neuro-Oncol 110:271–278

    Google Scholar 

  5. Larkin SJ, Ansorge O (2013) Pathology and pathogenesis of craniopharyngiomas. Pituitary 16:9–17

    PubMed  Google Scholar 

  6. Martinez-Barbera JP, Buslei R (2015) Adamantinomatous craniopharyngioma: pathology, molecular genetics and mouse models. J Pediatr Endocrinol Metab 28(1–2):7–17

    CAS  PubMed  Google Scholar 

  7. Kasai H, Hirano A, Llena JF, Kawamoto K (1997) A histopathological study of craniopharyngioma with special reference to its stroma and surrounding tissue. Brain Tumor Pathol 14(1):41–45

    CAS  PubMed  Google Scholar 

  8. Daubenbüchel A, Müller H (2015) Neuroendocrine disorders in pediatric craniopharyngioma patients. J Clin Med 4:389–413

    PubMed  PubMed Central  Google Scholar 

  9. Müller HL, Gebhardt U, Teske C, Faldum A, Zwiener I, Warmuth-Metz M, Pietsch T, Pohl F, Sörensen N, Calaminus G, Study Committee of KRANIOPHARYNGEOM 2000 (2011) Post-operative hypothalamic lesions and obesity in childhood craniopharyngioma: results of the multinational prospective trial KRANIOPHARYNGEOM 2000 after 3-year follow-up. Eur J Endocrinol 165:17–24

    PubMed  Google Scholar 

  10. Heinks K, Boekhoff S, Hoffmann A, Warmuth-Metz M, Eveslage M, Peng J, Calaminus G, Müller HL (2018) Quality of life and growth after childhood craniopharyngioma: results of the multinational trial KRANIOPHARYNGEOM 2007. Endocrine 59:364–372

    CAS  PubMed  Google Scholar 

  11. Müller HL, Merchant TE, Puget S, Martinez-Barbera JP (2017) New outlook on the diagnosis, treatment and follow-up of childhood-onset craniopharyngioma. Nat Rev Endocrinol 13:299–312

    PubMed  Google Scholar 

  12. Eveslage M, Calaminus G, Warmuth-Metz M, Kortmann RD, Pohl F, Timmermann B, Schuhmann MU, Flitsch J, Faldum A, Müller HL (2019) The postoperative quality of life in children and adolescents with craniopharyngioma. Dtsch Aerztebl Int 116(18):321–328

    Google Scholar 

  13. Brastianos PK, Taylor-Weiner A, Manley PE, Jones RT, Dias-Santagata D, Thorner AR, Lawrence MS, Rodriguez FJ, Bernardo LA, Schubert L, Sunkavalli A, Shillingford N, Calicchio ML, Lidov HG, Taha H, Martinez-Lage M, Santi M, Storm PB, Lee JY, Palmer JN, Adappa ND, Scott RM, Dunn IF, Laws ER Jr, Stewart C, Ligon KL, Hoang MP, Van Hummelen P, Hahn WC, Louis DN, Resnick AC, Kieran MW, Getz G, Santagata S (2014) Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet 46:161–165

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Apps JR, Carreno G, Gonzalez-Meljem JM, Haston S, Guiho R, Cooper JE, Manshaei S, Jani N, Hölsken A, Pettorini B, Beynon RJ, Simpson DM, Fraser HC, Hong Y, Hallang S, Stone TJ, Virasami A, Donson AM, Jones D, Aquilina K, Spoudeas H, Joshi AR, Grundy R, Storer LCD, Korbonits M, Hilton DA, Tossell K, Thavaraj S, Ungless MA, Gil J, Buslei R, Hankinson T, Hargrave D, Goding C, Andoniadou CL, Brogan P, Jacques TS, Williams HJ, Martinez-Barbera JP (2018) Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target. Acta Neuropathol 135(5):757–777

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gump JM, Donson AM, Birks DK, Amani VM, Rao KK, Griesinger AM, Kleinschmidt-DeMasters BK, Johnston JM, Anderson RC, Rosenfeld A, Handler M, Gore L, Foreman N, Hankinson TC (2015) Identification of targets for rational pharmacological therapy in childhood craniopharyngioma. Acta Neuropathol Commun 3:30

    PubMed  PubMed Central  Google Scholar 

  16. Hölsken A, Sill M, Merkle J, Schweizer L, Buchfelder M, Flitsch J, Fahlbusch R, Metzler M, Kool M, Pfister SM, von Deimling A, Capper D, Jones DT, Buslei R (2016) Adamantinomatous and papillary craniopharyngiomas are characterized by distinct epigenomic as well as mutational and transcriptomic profiles. Acta Neuropathol Commun 4:20

    PubMed  PubMed Central  Google Scholar 

  17. Goschzik T, Gessi M, Dreschmann V, Gebhardt U, Wang L, Yamaguchi S, Wheeler DA, Lauriola L, Lau CC, Müller HL, Pietsch T (2017) Genomic alterations of adamantinomatous and papillary craniopharyngioma. J Neuropathol Exp Neurol 76:126–134

    CAS  PubMed  Google Scholar 

  18. Andoniadou CL, Gaston-Massuet C, Reddy R, Schneider RP, Blasco MA, Le Tissier P, Jacques TS, Pevny LH, Dattani MT, Martinez-Barbera JP (2012) Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma. Acta Neuropathol 124:259–271

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Massimi L, Martelli C, Caldarelli M, Castagnola M, Desiderio C (2017) Proteomics in pediatric cystic craniopharyngioma. Brain Pathol 3:370–376

    Google Scholar 

  20. Hölsken A, Gebhardt M, Buchfelder M, Fahlbusch R, Blümcke I, Buslei R (2011) EGFR signaling regulates tumor cell migration in craniopharyngiomas. Clin Cancer Res 17:4367–4377

    PubMed  Google Scholar 

  21. Krishnamurthy N, Kurzrock R (2018) Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat Rev 62:50–60

    CAS  PubMed  Google Scholar 

  22. Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 11:1461–1473

    Google Scholar 

  23. Staal FJT, Sen JM (2008) The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur J Immunol 38(7):1788–1794

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mori M, Takeshima H, Kuratsu J i (2004) Expression of interleukin-6 in human craniopharyngiomas: a possible inducer of tumor-associated inflammation. Int J Mol Med 14:505–509

    CAS  PubMed  Google Scholar 

  25. Pettorini BL, Inzitari R, Massimi L, Tamburrini G, Caldarelli M, Fanali C, Cabras T, Messana I, Castagnola M, Di Rocco C (2010) The role of inflammation in the genesis of the cystic component of craniopharyngiomas. Childs Nerv Syst 26:1779–1784

    PubMed  Google Scholar 

  26. Donson AM, Apps J, Griesinger AM, Amani V, Witt DA, Anderson RCE, Niazi TN, Grant G, Souweidane M, Johnston JM, Jackson EM, Kleinschmidt-DeMasters BK, Handler MH, Tan AC, Gore L, Virasami A, Gonzalez-Meljem JM, Jacques TS, Martinez-Barbera JP, Foreman NK, Hankinson TC, Advancing Treatment for Pediatric Craniopharyngioma Consortium (2017) Molecular analyses reveal inflammatory mediators in the solid component and cyst fluid of human adamantinomatous craniopharyngioma. J Neuropathol Exp Neurol 76(9):779–788

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Martelli C, Serra R, Inserra I, Rossetti DV, Iavarone F, Vincenzoni F, Castagnola M, Urbani A, Tamburrini G, Caldarelli M, Massimi L, Desiderio C (2019) Investigating the protein signature of adamantinomatous craniopharyngioma pediatric brain tumor tissue: towards the comprehension of its aggressive behavior. Dis Markers. 2;2019:3609789

  28. Cavalheiro S, Dastoli PA, Silva NS, Toledo S, Lederman H, da Silva MC (2005) Use of interferon alpha in intratumoral chemotherapy for cystic craniopharyngioma. Childs Nerv Syst 21:719–724

    CAS  PubMed  Google Scholar 

  29. Bartels U, Laperriere N, Bouffet E, Drake J (2012) Intracystic therapies for cystic craniopharyngioma in childhood. Front Endocrinol (Lausanne) 3:39

    Google Scholar 

  30. Ierardi DF, Fernandes MJ, Silva IR, Thomazini-Gouveia J, Silva NS, Dastoli P, Toledo SR, Cavalheiro S (2007) Apoptosis in alpha interferon (IFN-alpha) intratumoral chemotherapy for cystic craniopharyngiomas. Childs Nerv Syst 23:1041–1046

    CAS  PubMed  Google Scholar 

  31. Emery P, Keystone E, Tony HP, Cantagrel A, van Vollenhoven R, Sanchez A, Alecock E, Lee J, Kremer J (2008) IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: results from a 24-week multicentre randomised placebo-controlled trial. Ann Rheum Dis 67(11):1516–1523

    CAS  PubMed  Google Scholar 

  32. Sarosiek S, Shah R, Munshi NC (2016) Review of siltuximab in the treatment of multicentric Castleman’s disease. Ther Adv Hematol 7(6):360–366

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, Savage KJ, Hernberg MM, Lebbé C, Charles J, Mihalcioiu C, Chiarion-Sileni V, Mauch C, Cognetti F, Arance A, Schmidt H, Schadendorf D, Gogas H, Lundgren-Eriksson L, Horak C, Sharkey B, Waxman IM, Atkinson V, Ascierto PA (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372(4):320–330

    CAS  PubMed  Google Scholar 

  34. Garon EB, Rizvi NA, Hui R, Tafreshi A, Gümüş M, Mazières J, Hermes B, Çay Şenler F, Csőszi T, Fülöp A, Rodríguez-Cid J, Wilson J, Sugawara S, Kato T, Lee KH, Cheng Y, Novello S, Halmos B, Li X, Lubiniecki GM, Piperdi B, Kowalski DM, KEYNOTE-407 Investigators (2015) Pembrolizumab for the treatment of non–small-cell lung cancer. N Engl J Med 379(21):2040–2051

    Google Scholar 

  35. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL, Anders RA (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20(19):5064–5074

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Topalian S, Hodi F, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Coy S, Rashid R, Lin JR, Du Z, Donson AM, Hankinson TC, Foreman NK, Manley PE, Kieran MW, Reardon DA, Sorger PK, Santagata S (2018) Multiplexed immunofluorescence reveals potential PD-1/PD-L1 pathway vulnerabilities in craniopharyngioma. Neuro-Oncology 20:1101–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Witt DA, Donson AM, Amani V, Moreira DC, Sanford B, Hoffman LM, Handler MH, Levy JMM, Jones KL, Nellan A, Foreman NK, Griesinger AM (2018) Specific expression of PD-L1 in RELA-fusion supratentorial ependymoma: implications for PD-1-targeted therapy. Pediatr Blood Cancer 65(5):e26960

    PubMed  PubMed Central  Google Scholar 

  39. Blaj C, Schmidt EM, Lamprecht S, Hermeking H, Jung A, Kirchner T, Horst D (2017) Oncogenic effects of high MAPK activity in colorectal cancer mark progenitor cells and persist irrespective of RAS mutations. Cancer Res 77(7):1763–1774

    CAS  PubMed  Google Scholar 

  40. Martinelli E, Morgillo F, Troiani T, Ciardiello F (2017) Cancer resistance to therapies against the EGFR-RAS-RAF pathway: the role of MEK. Cancer Treat Rev 53:61–69

    CAS  PubMed  Google Scholar 

  41. Montagut C, Settleman J (2009) Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett 283(2):125–134

    CAS  PubMed  Google Scholar 

  42. Grimaldi AM, Simeone E, Festino L, Vanella V, Strudel M, Ascierto PA (2017) MEK inhibitors in the treatment of metastatic melanoma and solid tumors. Am J Clin Dermatol 18(6):745–754

    PubMed  Google Scholar 

  43. Brastianos PK, Shankar GM, Gill CM, Taylor-Weiner A, Nayyar N, Panka DJ, Sullivan RJ, Frederick DT, Abedalthagafi M, Jones PS, Dunn IF, Nahed BV, Romero JM, Louis DN, Getz G, Cahill DP, Santagata S, Curry WT Jr, Barker FG (2016) Dramatic response of BRAF V600E mutant papillary craniopharyngioma to targeted therapy. J Natl Cancer Inst 108:2

    Google Scholar 

  44. de Blank P, Bandopadhayay P, Haas-Kogan D, Maryam Fouladi J, Fangusaro (2019) Management of pediatric low-grade glioma. Curr Opin Pediatr 31:21–27

    PubMed  PubMed Central  Google Scholar 

  45. Coppé J-P, Desprez P-Y, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol Mech Dis 5:99–118

    Google Scholar 

  46. Rodier F, Coppé JP, Patil CK, Hoeijmakers WA, Muñoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11(8):973–979

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mario Gonzalez-Meljem J, Haston S, Carreno G, Apps JR, Pozzi S, Stache C, Kaushal G, Virasami A, Panousopoulos L, Mousavy-Gharavy SN, Guerrero A, Rashid M, Jani N, Goding CR, Jacques TS, Adams DJ, Gil J, Andoniadou CL, Martinez-Barbera JP (2017) Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma. Nat Commun 8(1):1819

    Google Scholar 

  48. Hickson LTJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL, Kellogg TA, Khosla S, Koerber DM, Lagnado AB, Lawson DK, LeBrasseur NK, Lerman LO, McDonald KM, McKenzie TJ, Passos JF, Pignolo RJ, Pirtskhalava T, Saadiq IM, Schaefer KK, Textor SC, Victorelli SG, Volkman TL, Xue A, Wentworth MA, Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL (2019) Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47:446–456

    PubMed  PubMed Central  Google Scholar 

  49. Nellan A, Lester McCully CM, Garcia RC, Jayaprakash N, Widemann BC, Lee DW, Warren KE (2018) Improved CNS exposure to tocilizumab after cerebrospinal fluid compared to intravenous administration in rhesus macaques. Blood 132(6):662–666

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Grob S, Mirsky DM, Donson AM, Dahl N, Foreman NK, Hoffman LM, Hankinson TC, Mulcahy Levy JM (2019) Targeting IL-6 is a potential treatment for primary cystic craniopharyngioma. Front Oncol 9:791

    PubMed  PubMed Central  Google Scholar 

  51. Daubenbüchel AMM, Warmuth-Metz M, Müller HL, Warmuth-Metz M, Daubenbüchel AM, Müller HL (2015) Survival, hypothalamic obesity, and neuropsychological/psychosocial status after childhood-onset craniopharyngioma: newly reported long-term outcomes. Neuro-Oncology 17:1029–1038

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ros Whelan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whelan, R., Hengartner, A., Folzenlogen, Z. et al. Adamantinomatous craniopharyngioma in the molecular age and the potential of targeted therapies: a review. Childs Nerv Syst 36, 1635–1642 (2020). https://doi.org/10.1007/s00381-020-04677-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-020-04677-5

Keywords

Navigation