Skip to main content

Advertisement

Log in

The role of inflammation in the genesis of the cystic component of craniopharyngiomas

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Craniopharyngioma accounts for 5–10% of childhood tumors and, despite of the benign histological features, its clinical course can be malignant because of critical anatomical relationships with neural and vascular structures and the possible morbidity associated to resection. Only a few studies have addressed the molecular characterization of the cyst fluid so far and the mechanisms of action of intracystic agents are not clearly understood yet.

Methods

The acidic soluble proteins contained in the cystic fluid of six patients with cystic craniopharyngioma, three of them treated with intratumoral interferon-α, were analyzed. A high performance liquid chromatography electrospray ionization mass spectrometry analysis was performed.

Findings

The antimicrobial peptides α-defensins 1–3 relevant for innate immunity were detected in the cystic fluid before the intratumoral treatment. Amount of peptides significantly decreased in cystic fluid during pharmacological treatment.

Interpretation

Detection of α-defensins 1–3 excludes that cyst fluid formation can derive from disruption of blood–brain barrier and suggests the involvement of innate immune response in pathology of craniopharyngioma cyst formation. The reduction of α-defensins could derive both from direct antitumoral effect of interferon-α on squamous epithelial cells of craniopharyngioma cyst and from its immuno-modulatory effects on the recruitment of cells of innate immune systems. Interestingly, the clinical patient outcome well correlates with the gradual reduction of α-defensins 1–3 amount. Additional studies will be necessary to establish the role of these molecules in the pathogenesis of craniopharyngioma, and further investigations will be necessary to confirm the efficacy of the antitumoral activity of interferon-α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alen JF, Boto GR, Lagares A, de la Lama A, Gomez PA, Lobato RD (2002) Intratumoral bleomycin as a treatment for recurrent cystic craniopharyngioma. Case report and review of the literature. Neurocirurgia (Astur) 13:479–485

    CAS  Google Scholar 

  2. Arefyeva IA, Semenova JB, Zubairaev MS, Kondrasheva EA, Moshkin AV (2002) Analysis of fluid in craniopharyngioma-related cysts in children: proteins, lactate and pH. Acta Neurochir 144:551–554

    Article  CAS  Google Scholar 

  3. Càceres A (2005) Intracavitary therapeutic options in the management of cystic craniopharyngioma. Child’s Nerv Syst 21:705–718

    Article  Google Scholar 

  4. Cavalheiro S, Dastoli PA, Silva NS, Toledo S, Lederman H, da Silva MC (2005) Use of interferon alpha in intratumoral chemotherapy for cystic craniopharyngioma. Child’s Nerv Syst 21:719–724

    Article  CAS  Google Scholar 

  5. Di Rocco C, Massimi L, Tamburrini G, Pettorini BL, Novegno F, Sturiale C, Paternoster G, Caldarelli M (2007) Management of cystic craniopharyngiomas with intra-tumoural INF-a administration: clinical results and surgical techniques. Child’s Nerv Syst 23:1073

    Google Scholar 

  6. Ferrantini M, Capone I, Belardelli F (2007) Interferon-α and cancer: mechanisms of action and new perspectives of clinical use. Biochimie 89:884–893

    Article  CAS  PubMed  Google Scholar 

  7. Ganz T, Selsted ME, Lehrer RI (1990) Defensins. Eur J Haematol 44:1–8

    Article  CAS  PubMed  Google Scholar 

  8. Ganz T, Lehrer RI (1995) Defensins. Pharmac Ther 66:191–205

    Article  CAS  Google Scholar 

  9. Garrè ML, Cama A (2007) Craniopharyngioma: modern concepts in pathogenesis and treatment. Curr Opin Pediatr 19:471–479

    Article  PubMed  Google Scholar 

  10. Hirano A, Ghatek NR, Zimmerman HM (1973) Fenestrated blood vessels in craniopharyngioma. Acta Neuropathol 26:171–177

    Article  CAS  PubMed  Google Scholar 

  11. Honegger J, Rennae C, Fahlbusch R, Adams EF (1997) Progesteron receptor gene expression in craniopharyngiomas and evidence for biological activity. Neurosurgery 41:1359–1364

    Article  CAS  PubMed  Google Scholar 

  12. Ierardi DF, Fernandes MJS, Silva IR, Thomazini-Gouveia J, Silva NS, Dastoli P, Toledo SRC, Cavalheiro S (2007) Apoptosis in alpha interferon (IFN-α) intratumoral chemotherapy for cystic craniopharyngiomas. Child’s Nerv Syst 23:1041–1046

    Article  CAS  Google Scholar 

  13. Kalapurakal JA, Goldman S, Hsieh YC, Tomita T, Marymont MH (2003) Clinical outcome in children with craniopharyngioma treated with primary surgery and radiotherapy deferred until relapse. Med Pediatr Oncol 40:214–218

    Article  PubMed  Google Scholar 

  14. Kamal R, Jindal A, Suri A, Mahapatra AK (1999) Effect of craniopharyngioma fluid on femoral vessels of rat. Neurol Res 21:796–798

    CAS  PubMed  Google Scholar 

  15. Lingen MW, Polverini PJ, Bouck NP (1998) Retinoic acid and interferon alpha act sinergistically as antiangiogenic and antitumor agents against human head and neck squamous cell carcinoma. Cancer Res 58:5551–5558

    CAS  PubMed  Google Scholar 

  16. Lundy FT, Orr DF, Gallagher JR, Maxwell P, Shaw C, Napier SS, Cowan CG, Lamey PJ, Marley JJ (2004) Identification and overexpression of human neutrophil α-defensins (human neutrophil peptides 1, 2 and 3) in squamous cell carcinomas of the human tongue. Oral Oncol 40:139–144

    Article  CAS  PubMed  Google Scholar 

  17. Mayhew TM, Olsen DR (1991) Magnetic resonance imaging (MRI) and model-free estimates of brain volume determined using the Cavalieri principle. J Anat 178:133–144

    CAS  PubMed  Google Scholar 

  18. Merchant TE, Kiehna EN, Sanford RA, Mulhern RK, Thompson SJ, Wilson MW, Lustig RH, Kun LE (2002) Craniopharyngioma: the St. Jude Children’s Research Hospital experience 1984–2001. Int J Radiat Oncol Biol Phys 53:533–542

    Article  PubMed  Google Scholar 

  19. Mizukawa N, Sugiyama K, Ueno T, Mishima K, Takagi S, Sugahara T (2000) Detection of human α-defensin-1, an antimicrobial peptide, in the fluid of jaw cysts. Oral Surg Oral Med Oral Path 90:78–81

    CAS  Google Scholar 

  20. Mori S, Yamaguchi K, Morita H, Mohri N (1985) Distribution of HNK-1+ cells in malignant lymphomas. Acta Pathol Jpn 35:339–350

    CAS  PubMed  Google Scholar 

  21. Panyutich AV, Panyutich EA, Krapivin VA, Baturevichet EA, Ganz T (1993) Plasma defensin concentrations are elevated in patients with septicemia or bacterial meningitis. J Lab Clin Med 122:202–207

    CAS  PubMed  Google Scholar 

  22. Petito CK, De Girolamo U, Earle KM (1976) Craniopharyngiomas. A clinical and pathological review. Cancer 37:1944–1952

    Article  CAS  PubMed  Google Scholar 

  23. Pisano E, Cabras T, Montaldo C, Piras V, Inzitari R, Olmi C, Castagnola M, Messana I (2005) Peptides of human gingival crevicular fluid determined by HPLC-ESI-MS. J Oral Sci 113:462–468

    Article  CAS  Google Scholar 

  24. Satoh H, Uozumi T, Arita K, Kurisu K, Hotta T, Kiya K, Ikawa F, Goishi J, Sogabe T (1993) Spontaneous rupture of craniopharyngioma cysts. A report of 5 cases and review of the literature. Surg Neurol 40:414–419

    Article  CAS  PubMed  Google Scholar 

  25. Stevens A, Kloter I, Roggendorf W (1988) Inflammatory infiltrates and natural killer cell presence in human brain tumors. Cancer 61:738–743

    Article  CAS  PubMed  Google Scholar 

  26. Strander H (1986) Interferon treatment of human neoplasia. Adv Cancer Res 46:1–26

    Article  CAS  PubMed  Google Scholar 

  27. Szeifert GT, Julow J, Szabolcs M, Slowik F, Balint K, Pasztor E (1991) Secretory component of cystic craniopharyngiomas: a mucino-histochemical and electron-microscopic study. Surg Neurol 36:286–293

    Article  CAS  PubMed  Google Scholar 

  28. Vaquero J, Zurita M, de Oya S, Coca S, Morales C, Salas C (1999) Expression of vascular permeability factor in craniopharyngioma. J Neurosurg 91:831–834

    Article  CAS  PubMed  Google Scholar 

  29. Vidal S, Kovacs K, Lloyd RV, Meyer FB, Scheithauer BW (2002) Angiogenesis in patients with craniopharyngiomas: correlation with treatment and outcome. Cancer 94:738–745

    Article  PubMed  Google Scholar 

  30. Zhang Z, Marshall GA (1998) A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. J Am Soc Mass Spectrom 9:225–233

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

The authors declare they have no financial and personal interests in the material discussed in the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetta Ludovica Pettorini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettorini, B.L., Inzitari, R., Massimi, L. et al. The role of inflammation in the genesis of the cystic component of craniopharyngiomas. Childs Nerv Syst 26, 1779–1784 (2010). https://doi.org/10.1007/s00381-010-1245-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-010-1245-4

Keywords

Navigation