Skip to main content
Log in

Temporal statistical downscaling of precipitation and temperature forecasts using a stochastic weather generator

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Statistical downscaling is based on the fact that the large-scale climatic state and regional/local physiographic features control the regional climate. In the present paper, a stochastic weather generator is applied to seasonal precipitation and temperature forecasts produced by the International Research Institute for Climate and Society (IRI). In conjunction with the GLM (generalized linear modeling) weather generator, a resampling scheme is used to translate the uncertainty in the seasonal forecasts (the IRI format only specifies probabilities for three categories: below normal, near normal, and above normal) into the corresponding uncertainty for the daily weather statistics. The method is able to generate potentially useful shifts in the probability distributions of seasonally aggregated precipitation and minimum and maximum temperature, as well as more meaningful daily weather statistics for crop yields, such as the number of dry days and the amount of precipitation on wet days. The approach is extended to the case of climate change scenarios, treating a hypothetical return to a previously observed drier regime in the Pampas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apipattanavis, S., 2008: Stochastic nonparametric methods for multi-site weather generation and flood frequency estimation: applications to construction delay, hydrology and agricultural modeling. PhD dissertation, University of Colorado, 199 pages.

    Google Scholar 

  • Apipattanavis, S., G. P. Podestá, B. Rajagopalan, and R. W. Katz, 2007: A semiparametric multivariate and multisite weather generator. Water Resour. Res., 43, W11401, doi: 10.1029/2006WR005714.

    Article  Google Scholar 

  • Apipattanavis, S., F. Bert, G. P. Podestá, and B. Rajagopalan, 2010a: Linking weather generators and crop models for assessment of climate forecast outcomes. Agriculture and Forest Meteorology, 150, 166–174.

    Article  Google Scholar 

  • Apipattanavis, S., K. Sabol, K. Molenaar, B. Rajagopalan, Y. Xi, B. Blackard, and S. Patil, 2010b: Integrated framework for quantifying and predicting weather-related highway construction delays. Journal of Construction Engineering and Management, 136, 1160–1168.

    Article  Google Scholar 

  • Barnston, A. G., S. H. Li, S. J. Mason, D. G. DeWitt, L. Goddard, and X. F. Gong, 2010: Verification of the first 11 years of IRI’s seasonal climate forecasts. Journal of Applied Meteorology and Climatology, 49, 493–520.

    Article  Google Scholar 

  • Beersma, J. J., and T. Adri Buishand, 2003: Multi-site simulation of daily precipitation and temperature conditional on the atmospheric circulation. Climate Research, 25, 121–134.

    Article  Google Scholar 

  • Benestad, R. E., I. Hanssen-Bauer, and D. L. Chen, 2008: Empirical Statistical Downscaling. World Scientific, 228 pps.

    Book  Google Scholar 

  • Briggs, W. M., and D. S. Wilks, 1996: Extension of the Climate Prediction Center long-lead temperature and precipitation outlooks to general weather statistics. J. Climate, 9, 3496–3504.

    Article  Google Scholar 

  • Buishand, T. A., 1978: Some remarks on the use of daily rainfall models. J. Hydrol., 36, 295–308.

    Article  Google Scholar 

  • Caldwell, J., B. Rajagopalan, and E. Danner, 2014: Statistical modeling of daily water temperature attributes on the Sacramento River. Journal of Hydrologic Engineering, 20, 04014065, doi: 10.1061/(ASCE)HE.1943-5584.0001023.

    Article  Google Scholar 

  • Cleveland, W. S., 1979: Robust locally-weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74, 829–836.

    Article  Google Scholar 

  • Furrer, E. M., and R. W. Katz, 2007: Generalized linear modeling approach to stochastic weather generators. Climate Research, 34, 129–144.

    Article  Google Scholar 

  • Giorgi, F., and L. O. Mearns, 1991: Approaches to the simulation of regional climate change: A review. Rev. Geophys., 29, 191–216.

    Article  Google Scholar 

  • Hansen, J. W., and T. Mavromatis, 2001: Correcting lowfrequency variability bias in stochastic weather generators. Agricultural and Forest Meteorology, 109, 297–310.

    Article  Google Scholar 

  • Hastie, T. J., and R. J. Tibshirani, 1990: Generalized Additive Models. Chapman and Hall.

    Google Scholar 

  • Hostetler, S. W., J. R. Alder, and A. M. Allan, 2011: Dynamically downscaled climate simulations over North America: Methods, evaluation, and supporting documentation for users. U.S. Geological Survey Open-File Report 2011–1238, 64 pp.

    Google Scholar 

  • Katz, R. W., and M. B. Parlange, 1998: Overdispersion phenomenon in stochastic modeling of precipitation. J. Climate, 11, 591–601.

    Article  Google Scholar 

  • Kim, Y., R. W. Katz, B. Rajagopalanc, G. P. Podestá, and E. M. Furrer, 2012: Reduced overdispersion in stochastic weather generators using a generalized linear modeling approach. Climate Research, 53, 13–24.

    Article  Google Scholar 

  • MacDonald, I. L., and W. Zucchini, 1997: Hidden Markov and Other Models for Discrete-Valued Time Series. Chapman and Hall.

    Google Scholar 

  • Mannig, B., and Coauthors, 2013: Dynamical downscaling of climate change in Central Asia. Global and Planetary Change, 110, 26–39.

    Article  Google Scholar 

  • McCullagh, P., and J. A. Nelder, 1989: Generalized Linear Models. 2nd ed. Chapman and Hall, 206 pages.

    Book  Google Scholar 

  • Rajagopalan, B., and V. Lall, 1999: A k-nearest neighbor simulator for daily precipitation and other weather variables. Water Resour. Res., 35, 3089–3101.

    Article  Google Scholar 

  • Richardson, C. W., 1981: Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res., 17, 182–190.

    Article  Google Scholar 

  • Stern, R. D., and R. Coe, 1984: A model fitting analysis of daily rainfall data. Journal of the Royal Statistical Society: Series A, 147, 1–34.

    Article  Google Scholar 

  • Verdin, A., B. Rajagopalan, W. Kleiber, and R. W. Katz, 2015: Coupled stochastic weather generation using spatial and generalized linear models. Stochastic Environmental Research and Risk Assessment, 29, 347–356.

    Article  Google Scholar 

  • Wilby, R. L., and T. M. L. Wigley, 1997: Downscaling general circulation model output: A review of methods and limitations. Progress in Physical Geography, 21, 530–548.

    Article  Google Scholar 

  • Wilby, R. L., T. M. L. Wigley, D. Conway, P. D. Jones, B. C. Hewitson, J. Main, and D. S. Wilks, 1998: Statistical downscaling of general circulation model output: A comparison of methods. Water Resour. Res., 34, 2995–3008.

    Article  Google Scholar 

  • Wilby, R. L., S. P. Charles, E. Zorita, B. Timbal, P. Whetton, and L. O. Mearns, 2004: Guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting material for Data Distribution Centre of Intergovernmental Panel on Climate Change. [Available online at http://www.ipcc-data.org/guidelines/dgmno2400v1092004.pdf].

    Google Scholar 

  • Wilks, D. S., 1989: Conditioning stochastic daily precipitation models on total monthly precipitation. Water Resour. Res., 25, 1429–1439.

    Article  Google Scholar 

  • Wilks, D. S., and R. L. Wilby, 1999: The weather generator game: A review of stochastic weather models. Progress in Physical Geography, 23, 329–357.

    Article  Google Scholar 

  • Xu, Z. F., and Z. L. Yang, 2012: An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. J. Climate, 25, 6271–6286.

    Article  Google Scholar 

  • Yates, D., S. Gangopadhyay, B. Rajagopalan, and K. Strzepek, 2003: A technique for generating regional climate scenarios using a nearest neighbor algorithm. Water Resour. Res., 39, 1199, doi: 10.1029/2002WR001769.

    Article  Google Scholar 

  • Yoon, J. H., L. Y. R. Leung, and J. Correia Jr., 2012: Comparison of dynamically and statistically downscaled seasonal climate forecasts for the cold season over the United States. J. Geophys. Res., 117, D21109, doi: 10.1029/2012JD017650.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GyuWon Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Rajagopalan, B. & Lee, G. Temporal statistical downscaling of precipitation and temperature forecasts using a stochastic weather generator. Adv. Atmos. Sci. 33, 175–183 (2016). https://doi.org/10.1007/s00376-015-5115-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-5115-6

Keywords

Navigation