Skip to main content
Log in

Effect of nitrogen fertilization on the fate of rice residue-C in paddy soil depending on depth: 13C amino sugar analysis

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

A 100-day incubation experiment was conducted to (i) trace the fate of rice residue-derived 13C in the amino sugar (AS) pool in 0–1-cm (oxic) and 1–5-cm (anoxic) layers of paddy soil and (ii) evaluate the effects of inorganic N ((NH4)2SO4) fertilization on the formation of AS at early and late incubation times (5 and 100 days, respectively). The accumulation of rice residue-derived AS occurred at 5 and 100 days in both soil layers as a result of AS stabilization. Inorganic N addition increased the contents of rice residue-derived muramic acid, glucosamine, and galactosamine in the 0–1-cm soil layer for both incubation times by average on 14.7–20.8%, 23.7–31.8%, and 11.6–23.3%, respectively. In contrast, no effects of N fertilization on AS content in the 1–5-cm soil layer were found. The amount of rice residue-derived AS was higher in the 1–5-cm than in the 0–1-cm soil layer at early incubation time, probably due to the higher contents of ammonium here compared to the upmost oxic layer where nitrate was the dominated N form. Thus, the preferential uptake of ammonium but not nitrate by microorganisms led to the higher formation of rice residue-derived AS in the anoxic soil layer. The ratio of fungal to bacterial residues (fungal glucosamine/muramic acid) ranged between 1.0 and 1.7 for rice residue-derived AS and was 12.5–14.6 for total AS, indicating that fungi and bacteria have similar contributions to the decomposition of fresh rice residue whereas native soil organic matter (SOM) is a fungi-predominated process. This study emphasized that coupling of C and N cycles in paddy soils is different in oxic and anoxic layers, resulting in variation of plant residue decomposition and formation of SOM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amelung W, Zhang X, Zech W, Flach KW (1999) Amino sugars in native grassland soils along a climosequence in North America. Soil Sci Soc Am J 63:86–92

    Article  CAS  Google Scholar 

  • Amelung W, Miltner A, Zhang X, Zech W (2001) Fate of microbial residues during litter decomposition as affected by minerals. Soil Sci 166:598–606

    Article  CAS  Google Scholar 

  • Atere CT, Ge T, Zhu Z, Tong C, Jones DL, Shibistova O, Guggenberger G, Wu J (2017) Rice rhizodeposition and carbon stabilisation in paddy soil are regulated via drying-rewetting cycles and nitrogen fertilization. Biol Fertil Soils 53:407–417

    Article  CAS  Google Scholar 

  • Bai R, Xi D, He J, Hu H, Fang Y, Zhang L (2015) Activity, abundance and community structure of anammox bacteria along depth profiles in three different paddy soils. Soil Biol Biochem 91:212–221

    Article  CAS  Google Scholar 

  • Balasooriya WK, Huygens D, Rajapaksha RMCP, Boeckx P (2016) Effect of rice variety and fertilizer type on the active microbial community structure in tropical paddy fields in Sri Lanka. Geoderma 265:87–95

    Article  CAS  Google Scholar 

  • Burger M, Jackson LE (2003) Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biol Biochem 35:29–36

    Article  CAS  Google Scholar 

  • Chantigny MH, Angers DA, Prévost D, Vézina LP, Chalifour FP (1997) Soil aggregation and fungal and bacterial biomass under annual and perennial cropping systems. Soil Sci Soc Am J 61:262–267

    Article  CAS  Google Scholar 

  • Chen Z, Luo X, Hu R, Wu M, Wu J, Wei W (2010) Impact of long–term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microb Ecol 60:850–861

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Wang J, Mary B, Zhang J, Cai Z, Chang SX (2013) Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada. Soil Biol Biochem 57:848–857

    Article  CAS  Google Scholar 

  • Ding X, Zhang X, He H, Xie H (2010) Dynamics of soil amino sugar pools during decomposition processes of corn residues as affected by inorganic N addition. J Soils Sediments 10:758–766

    Article  CAS  Google Scholar 

  • Ding X, Han X, Zhang X (2013) Long-term impacts of manure, straw, and fertilizer on amino sugars in a silty clay loam soil under temperate conditions. Biol Fertil Soils 49:949–954

    Article  Google Scholar 

  • Engelking B, Flessa H, Joergensen RG (2007) Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biol Biochem 39:2111–2118

    Article  CAS  Google Scholar 

  • Frenzel P, Rothfuss F, Conrad R (1992) Oxygen profiles and methane turnover in a flooded rice microcosm. Biol Fertil Soils 14:84–89

    Article  CAS  Google Scholar 

  • Ge T, Li B, Zhu Z, Hu Y, Yuan H, Dorodnikov M, Jones DL, Wu J, Kuzyakov Y (2017) Rice rhizodeposition and its utilization by microbial groups depends on N fertilization. Biol Fertil Soils 53:37–48

    Article  CAS  Google Scholar 

  • Glaser B, Turrión MB, Alef K (2004) Amino sugars and muramic acid-biomarkers for soil microbial community structure analysis. Soil Biol Biochem 36:399–407

    Article  CAS  Google Scholar 

  • Glaser B, Millar N, Blum H (2006) Sequestration and turnover of bacterial- and fungal-derived carbon in a temperate grassland soil under long-term elevated atmospheric pCO2. Glob Chang Biol 12:1521–1531

    Article  Google Scholar 

  • Gunina A, Dippold M, Glaser B, Kuzyakov Y (2017) Turnover of microbial groups and cell components in soil: 13C analysis of cellular biomarkers. Biogeosciences 14:271–283

    Article  Google Scholar 

  • Güsewell S, Gessner MO (2009) N: P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23:211–219

    Article  Google Scholar 

  • Hoque MM, Inubushi K, Miura S, Kobayashi K, Kim H-Y, Okada M, Yabashi S (2002) Nitrogen dynamics in paddy field as influenced by free–air CO2 enrichment (FACE) at three levels of nitrogen fertilization. Nutr Cycl Agroecosyst 63:301–308

    Article  CAS  Google Scholar 

  • Inubushi K, Cheng W, Aonuma S, Hoque MM, Kobayashi K, Miura S, Kim HY, Okada M (2003) Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Glob Chang Biol 9:1458–1464

    Article  Google Scholar 

  • Janssen M, Lennartz B (2007) Horizontal and vertical water and solute fluxes in paddy rice fields. Soil Till Res 94:133–141

    Article  Google Scholar 

  • Jia J, Feng X, He J, He H, Lin L, Liu Z (2017) Comparing microbial carbon sequestration and priming in the subsoil versus topsoil of a Qinghai-Tibetan alpine grassland. Soil Biol Biochem 104:141–151

  • Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14

    Article  Google Scholar 

  • Kuzyakov Y, Friedel J, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liu M, Wu X, Han F, Zhang T (2010) Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China. Soil Till Res 106:268–274

    Article  Google Scholar 

  • Li X, Sun J, Wang H, Li X, Wang J, Zhang H (2017) Changes in the soil microbial phospholipid fatty acid profile with depth in three soil types of paddy fields in China. Geoderma 290:69–74

    Article  CAS  Google Scholar 

  • Liesack W, Schnell S, Revsbech NP (2000) Microbiology of flooded rice paddies. FEMS Microb Rev 24:625–645

    Article  CAS  Google Scholar 

  • Lüdemann H, Arth I, Liesack W (2000) Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Appl Environ Microb 66:754–762

    Article  Google Scholar 

  • Myrold DD, Posavatz NR (2007) Potential importance of bacteria and fungi in nitrate assimilation in soil. Soil Biol Biochem 39:1737–1743

    Article  CAS  Google Scholar 

  • Nakamura A, Tun CC, Asakawa S, Kimura M (2003) Microbial community responsible for the decomposition of rice straw in a paddy field: estimation by phospholipid fatty acid analysis. Biol Fertil Soils 38:288–295

    Article  CAS  Google Scholar 

  • Noll M, Matthies D, Frenzel P, Derakshani M, Liesack W (2005) Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environ Microb 7:382–395

    Article  CAS  Google Scholar 

  • Pan G, Li L, Wu L, Zhang X (2004) Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob Chang Biol 10:79–92

    Article  Google Scholar 

  • Pan G, Zhou P, Li Z, Smith P, Li L, Qiu D, Zhang X, Xu X, Shen S, Chen X (2009) Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agric Ecosyst Environ 131:274–280

    Article  CAS  Google Scholar 

  • Recous S, Mary B, Faurie G (1990) Microbial immobilization of ammonium and nitrate in cultivated soils. Soil Biol Biochem 22:913–922

    Article  CAS  Google Scholar 

  • Rousk K, Michelsen A, Rousk J (2016) Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments. Glob Chang Biol 22:4150–4161

    Article  PubMed  Google Scholar 

  • Schmidt I, Sliekers O, Schmid M, Cirpus I, Strous M, Dock E, Kuenen JG, Jetten MSM (2002) Aerobic and anaerobic ammonia oxidizing bacteria-competitors or natural partners? FEMS Microbiol Ecol 39:175–181

    CAS  PubMed  Google Scholar 

  • Strickland MS, Rousk J (2010) Considering fungal: bacterial dominance in soils-methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395

    Article  CAS  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    Article  PubMed  Google Scholar 

  • Wang B, Zhao J, Guo Z, Ma J, Xu H, Jia Z (2015) Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME J 9:1062–1075

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Ge T, Yuan H, Li B, Zhu H, Zhou P, Sui F, O’Donnell AG, Wu J (2014) Changes in bacterial CO2 fixation with depth in agricultural soils. Appl Microb Biotechnol 98:2309–2319

    Article  CAS  Google Scholar 

  • Zhang X, Amelung W (1996) Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol Biochem 28:1201–1206

    Article  CAS  Google Scholar 

  • Zhang W, Xu M, Wang X, Huang Q, Nie J, Li Z, Li S, Hwang SW, Lee KB (2012) Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. J Soils Sediments 12:457–470

    Article  Google Scholar 

  • Zhong WH, Cai ZC (2007) Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Appl Soil Ecol 36:84–91

    Article  Google Scholar 

Download references

Funding

This study was supported by the National key Research Program (2016YFD0200106, 2017YFC0505503), National Natural Science Foundation of China (41671298, 41430860), and Youth Innovation Team Project of ISA, CAS (2017QNCXTD_GTD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yirong Su.

Electronic supplementary material

ESM 1

(DOCX 1.28 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xia, Y., Hu, Y. et al. Effect of nitrogen fertilization on the fate of rice residue-C in paddy soil depending on depth: 13C amino sugar analysis. Biol Fertil Soils 54, 523–531 (2018). https://doi.org/10.1007/s00374-018-1278-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-018-1278-5

Keywords

Navigation