Skip to main content
Log in

Effects of carbon and phosphorus addition on microbial respiration, N2O emission, and gross nitrogen mineralization in a phosphorus-limited grassland soil

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Soil microbes are frequently limited by carbon (C), but also have a high phosphorus (P) requirement. Little is known about the effect of P availability relative to the availability of C on soil microbial activity. In two separate experiments, we assessed the effect of P addition (20 mg P kg−1 soil) with and without glucose addition (500 mg C kg−1 soil) on gross nitrogen (N) mineralization (15N pool dilution method), microbial respiration, and nitrous oxide (N2O) emission in a grassland soil. In the first experiment, soils were incubated for 13 days at 90% water holding capacity (WHC) with addition of NO3 (99 mg N kg−1 soil) to support denitrification. Addition of C and P had no effect on gross N mineralization. Initially, N2O emission significantly increased with glucose, but it decreased at later stages of the incubation, suggesting a shift from C to NO3 limitation of denitrifiers. P addition increased the N2O/CO2 ratio without glucose but decreased it with glucose addition. Furthermore, the 15N recovery was lowest with glucose and without P addition, suggesting a glucose by P interaction on the denitrifying community. In the second experiment, soils were incubated for 2 days at 75% WHC without N addition. Glucose addition increased soil 15N recovery, but had no effect on gross N mineralization. Possibly, glucose addition increased short-term microbial N immobilization, thereby reducing N-substrates for nitrification and denitrification under more aerobic conditions. Our results indicate that both C and P affect N transformations in this grassland soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aulakh MS, Walters DT, Doran JW, Francis DD, Mosier AR (1991) Crop residue type and placement effects on denitrification and mineralization. Soil Sci Soc Am J 55:1020–1025

    Article  Google Scholar 

  • Bååth E, Anderson TH (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963

    Article  Google Scholar 

  • Baral BR, Kuyper TW, Van Groenigen JW (2014) Liebig’s law of the minimum applied to a greenhouse gas: alleviation of P-limitation reduces soil N2O emission. Plant Soil 374:539–548

    Article  CAS  Google Scholar 

  • Beck T, Joergensen R, Kandeler E, Makeschin F, Nuss E, Oberholzer H, Scheu S (1997) An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol Biochem 29:1023–1032

    Article  CAS  Google Scholar 

  • Braun J, Mooshammer M, Wanek W, Prommer J, Walker TWN, Rütting T, Richter A (2018) Full 15N tracer accounting to revisit major assumptions of 15N isotope pool dilution approaches for gross nitrogen mineralization. Soil Biol Biochem 117:16–26

    Article  CAS  Google Scholar 

  • Bremner JM (1997) Sources of nitrous oxide in soils. Nutr Cycl Agroecosyst 49:7–16

    Article  CAS  Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329

    Article  CAS  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson D (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Bruulsema T, Duxbury J (1996) Simultaneous measurement of soil microbial nitrogen, carbon, and carbon isotope ratio. Soil Sci Soc Am J 60:1787–1791

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Phil Trans R Soc B 368:20130122

    Article  PubMed  PubMed Central  Google Scholar 

  • Cadisch G, Giller KE, Urquiaga S, Miranda CHB, Boddey RM, Schunke RM (1994) Does phosphorus supply enhance soil-N mineralization in Brazilian pastures? Eur J Agron 3:339–345

    Article  Google Scholar 

  • Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y (2014) Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Glob Chang Biol 20:2356–2367

    Article  PubMed  Google Scholar 

  • Chen H, Zhang W, Gurmesa GA, Zhu X, Li D, Mo J (2017) Phosphorus addition affects soil nitrogen dynamics in a nitrogen-saturated and two nitrogen-limited forests. Eur J Soil Sci 68:472–479

    Article  CAS  Google Scholar 

  • Cleveland CC, Liptzin D (2007) C:N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252

    Article  Google Scholar 

  • Cleveland CC, Townsend AR, Schmidt SK (2002) Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies. Ecosystems 5:680–691

    Article  CAS  Google Scholar 

  • Dalal RC, Wang W, Robertson GP, Parton WJ (2003) Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Soil Res 41:165–195

    Article  CAS  Google Scholar 

  • Dijkstra FA, Hutchinson GL, Reeder JD, LeCain DR, Morgan JA (2011) Elevated CO2, but not defoliation, enhances N cycling and increases short-term soil N immobilization regardless of N addition in a semiarid grassland. Soil Biol Biochem 43:2247–2256

    Article  CAS  Google Scholar 

  • Dijkstra FA, He M, Johansen MP, Harrison JJ, Keitel C (2015) Plant and microbial uptake of nitrogen and phosphorus affected by drought using 15N and 32P tracers. Soil Biol Biochem 82:135–142

    Article  CAS  Google Scholar 

  • Falkiner RA, Khanna PK, Raison RJ (1993) Effect of superphosphate addition on N mineralization in some Australian forest soils. Soil Res 31:285–296

    Article  CAS  Google Scholar 

  • Firestone MK (1982) Biological denitrification. In: Stevenson FJ (Ed) Nitrogen in agricultural soils. Am Soc Agron, Madison, WI, USA, pp. 289–326

  • Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in soil. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, New York, pp 7–21

    Google Scholar 

  • Flavel TC, Murphy DV (2006) Carbon and nitrogen mineralization rates after application of organic amendments to soil. J Environ Qual 35:183–193

    Article  CAS  PubMed  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 129–234

    Google Scholar 

  • Hall SJ, Matson PA (1999) Nitrogen oxide emissions after nitrogen additions in tropical forests. Nature 400:152–155

    Article  CAS  Google Scholar 

  • Henry S, Texier S, Hallet S, Bru D, Dambreville C, Chèneby D, Bizouard F, Germon JC, Philippot L (2008) Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. Environ Microbiol 10:3082–3092

    Article  CAS  PubMed  Google Scholar 

  • Hill BH, Elonen CM, Jicha TM, Kolka RK, Lehto LL, Sebestyen SD, Seifert-Monson LR (2014) Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types. Biogeochemistry 120:203–224

    Article  CAS  Google Scholar 

  • Houlton BZ, Wang YP, Vitousek PM (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–330

    Article  CAS  PubMed  Google Scholar 

  • Hue NV, Adams F (1984) Effect of phosphorus level on nitrification rates in three low-phosphorus ultisols. Soil Sci 137:324–331

    Article  CAS  Google Scholar 

  • Ilstedt U, Singh S (2005) Nitrogen and phosphorus limitations of microbial respiration in a tropical phosphorus-fixing acrisol (ultisol) compared with organic compost. Soil Biol Biochem 37:1407–1410

    Article  CAS  Google Scholar 

  • Kirkham DON, Bartholomew WV (1954) Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci Soc Am J 18:33–34

    Article  CAS  Google Scholar 

  • Kranabetter JM, Banner A, Groot AD (2005) An assessment of phosphorus limitations to soil nitrogen availability across forest ecosystems of north coastal British Columbia. Can J For Res 35:530–540

    Article  CAS  Google Scholar 

  • Liu R, Hayden HL, Suter H, Hu H, Lam SK, He J, Mele PM, Chen D (2017) The effect of temperature and moisture on the source of N2O and contributions from ammonia oxidizers in an agricultural soil. Biol Fertil Soils 53:141–152

    Article  CAS  Google Scholar 

  • Luo J, Tillman RW, Ball PR (1999) Factors regulating denitrification in a soil under pasture. Soil Biol Biochem 31:913–927

    Article  CAS  Google Scholar 

  • Mehnaz KR, Dijkstra FA (2016) Denitrification and associated N2O emissions are limited by phosphorus availability in a grassland soil. Geoderma 284:34–41

    Article  CAS  Google Scholar 

  • Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hardjono A (2010) Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation. Soil Sci Plant Nutr 56:782–788

    Article  CAS  Google Scholar 

  • Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hardjono A (2013) Effects of phosphorus addition with and without ammonium, nitrate, or glucose on N2O and NO emissions from soil sampled under Acacia mangium plantation and incubated at 100% of the water-filled pore space. Biol Fertil Soils 49:13–21

    Article  CAS  Google Scholar 

  • Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J (2014) Phosphorus application reduces N2O emissions from tropical leguminous plantation soil when phosphorus uptake is occurring. Biol Fertil Soils 50:45–51

    Article  CAS  Google Scholar 

  • Mori T, Yokoyama D, Kitayama K (2016) Contrasting effects of exogenous phosphorus application on N2O emissions from two tropical forest soils with contrasting phosphorus availability. SpringerPlus 5:1237

    Article  PubMed  PubMed Central  Google Scholar 

  • Mori T, Wachrinrat C, Staporn D, Meunpong P, Suebsai W, Matsubara K, Boonsri K, Lumban W, Kuawong M, Phukdee T, Srifai J, Boonman K (2017) Effects of phosphorus addition on nitrogen cycle and fluxes of N2O and CH4 in tropical tree plantation soils in Thailand. Agric Nat Resour 51:91–95

    Google Scholar 

  • Morley N, Baggs EM (2010) Carbon and oxygen controls on N2O and N2 production during nitrate reduction. Soil Biol Biochem 42:1864–1871

    Article  CAS  Google Scholar 

  • Munevar F, Wollum AG (1977) Effects of the addition of phosphorus and inorganic nitrogen on carbon and nitrogen mineralization in Andepts from Colombia. Soil Sci Soc Am J 41:540–545

    Article  CAS  Google Scholar 

  • Murray PJ, Hatch DJ, Dixon ER, Stevens RJ, Laughlin RJ, Jarvis SC (2004) Denitrification potential in a grassland subsoil: effect of carbon substrates. Soil Biol Biochem 36:545–547

    Article  CAS  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Pace AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties, 2nd edn. Am Soc Agron, Inc., Madison, WI, pp 403–430

    Google Scholar 

  • Pietri JA, Brookes PC (2008) Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol Biochem 40:1856–1861

    Article  Google Scholar 

  • Raiesi F, Ghollarata M (2006) Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration, biomass and enzyme activities in a calcareous soil. Pedobiologia 50:413–425

    Article  CAS  Google Scholar 

  • Ravishankara A, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  CAS  PubMed  Google Scholar 

  • Robertson GP, Groffman PM (2007) Nitrogen transformations. Soil Microbiol Ecol. Biochemist 3:341–364

    Google Scholar 

  • Ross DJ, Speir TW, Kettles HA, Mackay AD (1995) Soil microbial biomass, C and N mineralization and enzyme activities in a hill pasture: influence of season and slow-release P and S fertilizer. Soil Biol Biochem 27:1431–1443

    Article  CAS  Google Scholar 

  • Signor D, Cerri CEP (2013) Nitrous oxide emissions in agricultural soils: a review. Pesq Agrop Trop 43:322–338

    Article  Google Scholar 

  • Šimek M, Hopkins DW (1999) Regulation of potential denitrification by soil pH in long-term fertilized arable soils. Biol Fertil Soils 30:41–47

    Article  Google Scholar 

  • Stark JM, Hart SC (1996) Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis. Soil Sci Soc Am J 60:1846–1855

    Article  CAS  Google Scholar 

  • Sundareshwar P, Morris J, Koepfler E, Fornwalt B (2003) Phosphorus limitation of coastal ecosystem processes. Science 299:563–565

    Article  CAS  PubMed  Google Scholar 

  • Wakelin SA, Condron LM, Gerard E, Dignam BE, Black A, O’Callaghan M (2017) Long-term P fertilisation of pasture soil did not increase soil organic matter stocks but increased microbial biomass and activity. Biol Fertil Soils 53:511–521

    Article  CAS  Google Scholar 

  • Wang Q, Liu YR, Zhang CJ, Zhang LM, Han LL, Shen JP, He JZ (2017) Responses of soil nitrous oxide production and abundances and composition of associated microbial communities to nitrogen and water amendment. Biol Fertil Soils 53:601–611

    Article  CAS  Google Scholar 

  • Weier KL, Doran JW, Power JF, Walters DT (1993) Denitrification and dinitrogen/nitrous oxide ratio as affected by soil water, available carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1267–1272

    Google Scholar 

  • Weil RR, Brady NC (2016) The nature and properties of soils, 15th edn. Pearson, Boston, p 912

    Google Scholar 

  • White J, Reddy K (1999) Influence of nitrate and phosphorus loading on denitrifying enzyme activity in Everglades wetland soils. Soil Sci Soc Am J 63:1945–1954

    Article  CAS  Google Scholar 

  • White J, Reddy K (2000) Influence of phosphorus loading on organic nitrogen mineralization of Everglades soils. Soil Sci Soc Am J 64:1525–1534

    Article  CAS  Google Scholar 

  • Wrage N, Velthof G, Van Beusichem M, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732

    Article  CAS  Google Scholar 

  • Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W (2015) The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol Monogr 85:133–155

    Article  Google Scholar 

Download references

Acknowledgements

We thank Hero Tahaei and Janani Vimalathithen for their assistance in soil chemical analyses. This research was financially supported by the Australian Research Council (FT100100779).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazi R. Mehnaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehnaz, K.R., Keitel, C. & Dijkstra, F.A. Effects of carbon and phosphorus addition on microbial respiration, N2O emission, and gross nitrogen mineralization in a phosphorus-limited grassland soil. Biol Fertil Soils 54, 481–493 (2018). https://doi.org/10.1007/s00374-018-1274-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-018-1274-9

Keywords

Navigation