Skip to main content

Advertisement

Log in

Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients

  • Review
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Billions of people and many soils across the planet suffer from micronutrient (MN) deficiencies impairing human health. In general, fertilization of deficient soils, according to soil test, with MNs alone and in combination with nitrogen, phosphorous, and potassium (NPK) baseline treatment increases crop yield. The soil applied fertilizer-MN use efficiency (MUE) by crops is <5 % due to a lack of synchronization between the fertilizer-MN release and their crop demand during growth. Nanotechnology and biotechnology have the potential to play a prominent place in transforming agricultural systems and food production worldwide in the coming years. MNs added in microcapsules and nanocapsules, nanomaterials (NMs), and nanoparticles (NPs) are taken up and translocated within plants when grown to maturity, increasing crop yield and MN concentration in plants. Noteworthy, many of the effects of NPs and NMs on crop yield and quality, human health, and associated environmental risks remain to be explored. Increasing MUE requires synchronizing the release of nutrients from fertilizers with crop demand during the growing season. Development of intelligent MN fertilizer delivery platforms (IMNDP) may be possible on the basis of elucidating communication signals between plant roots and soil microorganisms. Important benefits from the development and farm adoption of intelligent MN delivery platforms include increased MUE, reduced fertilizer use, and minimal toxicity and environmental impacts. This article proposes for the first time a novel model for IMNDP to enhance MUE and food quality by enabling the synchronization of MN release from fertilizers according to crop demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abedi-Koupai J, Varshosaz J, Mesforoosh M, Khoshgoftarmanesh AH (2012) Controlled release of fertilizer microcapsules using ethylene vinyl acetate polymer to enhance micronutrient deficiency and water use efficiency. J Plant Nutr 35:1130–1138

    Article  CAS  Google Scholar 

  • Adhikary BH, Shrestha J, Baral BR (2010) Effects of micronutrients on growth and productivity of maize in acidic soil. Int Res J Appl Basic Sci 1:8–15

    Google Scholar 

  • Adler FR (2011) Plant signalling: the opportunities and dangers of chemical communication. Biol Lett 7:161–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Akhter S, Ahmad I, Ahmad MZ, Ramazani F, Singh A, Rahman Z, Ahmad FJ, Storm G, Kok RJ (2013) Nanomedicines as cancer therapeutics: current status. Curr Cancer Drug Targets 13:362–378

    Article  CAS  PubMed  Google Scholar 

  • Alidoust D, Isoda A (2014) Phytotoxicity assessment of c-Fe2O3 nanoparticles on root elongation and growth of rice plant. Environ Earth Sci 71:5173–5182

    Article  CAS  Google Scholar 

  • Alimohammadi M, Xu Y, Wang D, Biris AS, Khodakovskaya MV (2011) Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its in vivo multimodal detection. Nanotechnol 22:295101–295108

    Article  CAS  Google Scholar 

  • Alloway BJ (2008) Micronutrient deficiencies in global crop production. Springer Science and Business Media. UK, Reading, 354 p

    Book  Google Scholar 

  • Amiri ME, Fallahi E, Golchin A (2008) Influence of foliar and ground fertilization on yield, fruit quality, and soil, leaf, and fruit mineral nutrients in apple. J Plant Nutr 31:515–525

    Article  CAS  Google Scholar 

  • Antisari LV, Laudicina VA, Gatti A, Carbone S, Badalucco L, Vianello G (2015) Soil microbial biomass carbon and fatty acid composition of earthworm Lumbricus rubellus after exposure to engineered nanoparticles. Biol Fertil Soils 51:261–269

    Article  CAS  Google Scholar 

  • Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2013) Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94

    Article  CAS  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Ghosh K, Varadachari C (2014) Multimicronutrient slow-release fertilizer of zinc, iron, manganese, and copper. Int. J. Chem. Eng. Article ID 327153. doi:10.1155/2014/327153. 7 p

  • Bandyopadhyay S, Bhattacharya I, Ghosh K, Varadachari C (2008) New slow-releasing molybdenum fertilizer. J Agric Food Chem 56:1343–1349

    Article  CAS  PubMed  Google Scholar 

  • Bassler B (2002) Small talk: cell-to-cell communication in bacteria. Cell 109:421–424

    Article  CAS  PubMed  Google Scholar 

  • Bernal M, Casero D, Singh V, Grandon T, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL, Merchant SS, Krämer U (2012) Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. Plant Cell 24:738–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bingham FT, Garber MJ (1960) Solubility and availability of micronutrients in relation to phosphorus fertilization. Soil Sci Soc Am Proc 24:209–213

    Article  CAS  Google Scholar 

  • Blackshaw RE, Hao X, Brandt RN, Clayton GW, Harker KN, O’Donovan JT, Johnson EN, Vera CL (2011) Canola response to ESN and urea in a four-year no-till cropping system. Agr J 103:92–94

    Article  Google Scholar 

  • Bolle-Jones EW (1955) The interactions of iron and potassium in the potato plant. Plant Soil 6:129–173

    Article  CAS  Google Scholar 

  • Bouain N, Shahzad Z, Rouached A, Khan GA, Berthomieu P, Abdelly C, Poirier Y, Briat J-F, Curie C, Gaymard F (2007) Iron utilization and metabolism in plants. Curr Opin Plant Biol 10:276–282

    Article  CAS  Google Scholar 

  • Bunka DHJ, Stockley PG (2006) Aptamers come of age—at last. Nat Rev Microbiol 4:588–596

    Article  CAS  PubMed  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  PubMed  Google Scholar 

  • Burke DJ, Zhu S, Pablico-Lansigan MP, Hewins CR, Samia ACS (2014) Titanium oxide nanoparticle effects on composition of soil microbial communities and plant performance. Biol Fertil Soils 50:1169–1173

    Article  CAS  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cer Chem 87:10–20

    Article  CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Choi SJ, Decker EA, McClements DJ (2009) Impact of iron encapsulation within the interior aqueous phase of water-in-oil-in-water emulsions on lipid oxidation. Food Chem 116:271–276

    Article  CAS  Google Scholar 

  • Clemens S, Deinlein U, Ahmadi H, Höreth S, Uraguchi S (2013) Nicotianamine is a major player in plant Zn homeostasis. Biometals 26:623–632

    Article  CAS  PubMed  Google Scholar 

  • DeRosa M, Monreal CM, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotech 5:91

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2015a) Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicol 24:119–129

    Article  CAS  Google Scholar 

  • Dimkpa CO, Hansen T, Stewart J, McLean JE, Britt DW, Anderson AJ (2015b) ZnO nanoparticles and root colonization by a beneficial pseudomonad influence metal responses in bean (Phaseolus vulgaris). Nanotoxicol 9:271–278

    Article  CAS  Google Scholar 

  • Dimkpa CO (2014) Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J Basic Microb 54:889–904

    Article  CAS  Google Scholar 

  • Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013) Fate of CuO and ZnO nano- and microparticles in the plant environment. Env Sci Technol 47:4734–4742

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson A (2012a) CuO and ZnO nanoparticles: phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125–1129

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2012b) Bioactivity and biomodification of Ag, ZnO and CuO nanoparticles with relevance to plant performance in agriculture. Industr Biotechnol 8:344–357

    Article  CAS  Google Scholar 

  • El-Kereti MA, El-Feky SA, Khater MS, Osman YA, El-sherbini EA (2013) ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil. Recent Pat Food Nutrit 5:1–13

    Article  Google Scholar 

  • Fageria VD (2001) Nutrient interactions in crop plants. J Plant Nutr 24:1269–1290

    Article  CAS  Google Scholar 

  • Ferrandon M, Chamel AR (1988) Cuticular retention, foliar absorption and translocation of Fe, Mn and Zn supplied in organic and inorganic form. J Plant Nutr 11:247–263

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Envir Sci Technol 48:2526–2540

    Article  CAS  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Env Sci Technol 47:10645–10652

    CAS  Google Scholar 

  • Goh EB, Yim G, Tsui W, McClure J, Surette MG, Davies J (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Nat Acad Sci 99:17025–17030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González ME, Cea M, Medina J, González A, Diez MC, Cartes P, Monreal C, Navia R (2015) Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled release fertilizer using biochar as support material. Sci Tot Envir 505:446–453

    Article  CAS  Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763:595–608

    Article  CAS  PubMed  Google Scholar 

  • Hawkesford MJ (2014) Reducing the reliance on nitrogen fertilizer for wheat production. Cer Sci Food Secur Nutrit Sustain 59:276–283

  • Han J, Guenier AS, Salmieri S, Lacroix M (2008) Alginate and chitosan functionalization for micronutrient encapsulation. J Agric Food Chem 56:2528–35

    Article  CAS  PubMed  Google Scholar 

  • Hossain K-Z, Monreal CM, Sayari A (2008) Adsorption of urease on PE-MCM-41 and its catalytic effect on hydrolysis of urea. Coll Surf B: Biointerfaces 62:42–50

    Article  CAS  Google Scholar 

  • Huo C, Ouyang J, Yang H (2014) CuO nanoparticles encapsulated inside Al-MCM-41 mesoporous materials via direct synthetic route. Sci Rep 4:3682 (1–9)

    PubMed  PubMed Central  Google Scholar 

  • Imtiaz M, Rashid A, Khan P, Memon MY, Aslam M (2010) The role of micronutrients in crop production and human health. Pak J Bot 42:2565–2578

    CAS  Google Scholar 

  • International Rice Research Institute – IRRI (1999) Program report for 1998. Los Baños, Philippines, 188 p

    Google Scholar 

  • Kaiser D (2011) Are micronutrients needed in high yield environments? University of Minnesota Extension. (http://www.extension.umn.edu/agriculture/nutrient-management/docs/MVTL-micros-2011.pdf).

  • Keuskamp DH, Kimber R, Bindraban P, Dimkpa C, Schenkeveld WDC (2015) Plant exudates for nutrient uptake. VFRC Report 2015/4. Virtual Fertilizer Research Center, Washington, D.C. 72 pp

  • Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. PNAS 108:1028–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li ZR, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Khosroyar S, Akbarzade A, Arjoman M, Safekordil AA, Mortazavi SA (2012) Ferric saccharate capsulation with alginate coating using emulsification method. Afr J Microb Res 6:2455–2461

    CAS  Google Scholar 

  • Kim JH, Lee Y, Kim EJ, Gu S, Sohn EJ, Seo YS, An HJ, Chang YS (2014) Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environ Sci Technol 48:3477–3485

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Lee S, Lee I (2012) Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut 223:2799–2806

    Article  CAS  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–80

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Ann Rev Plant Biol 63:1–22

    Article  CAS  Google Scholar 

  • Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol 150:786–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiates) and wheat (Triticum aestivum): plant agar tests for water-insoluble nanoparticles. Envir Toxicol Chem 27:1915–1921

    Article  CAS  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson J, Reid M, Ratnikova T, Rao A, Luo H, Ke P (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132

    Article  CAS  PubMed  Google Scholar 

  • Lin DH, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  PubMed  Google Scholar 

  • Lin DH, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Envir Pollut 150:243–250

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Envir 514:131–139

    Article  CAS  Google Scholar 

  • Liu P, Huang Q, Chen W (2012a) Construction and application of a zinc-specific biosensor for assessing the immobilization and bioavailability of zinc in different soils. Envir Pollut 164:66–72

    Article  CAS  Google Scholar 

  • Liu G, Hanlon E, Li Y (2012b) Understanding and applying chelated fertilizers effectively based on soil pH. Horticultural Sciences Department, Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida (http://edis.ifas.ufl.edu/hs1208, accessed November 2014).

  • Liu QL, Chen B, Wang QL, Shi XL, Xiao ZY, Lin JX, Fang XH (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Loneragan JF, Grove TS, Robson DR, Snowball K (1979) Phosphorus toxicity as a factor in zinc-phosphorus interactions in plants. Soil Sci Soc Am J 43:966–972

    Article  CAS  Google Scholar 

  • Ma X, Geisler-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Maderova L, Paton GI (2013) Deployment of microbial sensors to assess zinc bioavailability and toxicity in soils. Soil Biol Biochem 66:222–228

    Article  CAS  Google Scholar 

  • Malakouti MJ (2008) The effect of micronutrients in ensuring efficient use of macronutrients. Turk J Agric For 32:215–220

    CAS  Google Scholar 

  • Malakouti MJ (2000) Balanced nutrition of wheat: an approach towards self-sufficiency and enhancement of national health. A compilation of papers, Ministry of Agriculture, Karaj, Iran, 544 p

    Google Scholar 

  • Marschner H (2012) Mineral nutrition of higher plants. Academic Press, San Diego, California, USA, 889 p

    Google Scholar 

  • Martineau N, McLean JE, Dimkpa CO, Britt DW, Anderson AJ (2014) Components from wheat roots modify the bioactivity of ZnO and CuO nanoparticles in a soil bacterium. Envir Poll 187:65–72

    Article  CAS  Google Scholar 

  • Mastronardi E, Tsae P, Zhang X, Monreal C, DeRosa MC (2015) Strategic role of nanotechnology in fertilizers: potential and limitations. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Emerging nanotechnologies in agriculture. Verlag, New York, NY, pp 25–68

    Google Scholar 

  • Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64:369–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miralles P, Church TL, Harris AT (2012a) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Envir Sci Technol 46:9224–9239

    Article  CAS  Google Scholar 

  • Miralles P, Johnson E, Church TL, Harris AT (2012b) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9:3514–3527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moghaddasi S, Khoshgoftarmanesh AH, Karimzadeh F, Chaney RL (2013) Preparation of nano-particles from waste tire rubber and evaluation of their effectiveness as zinc source for cucumber in nutrient solution culture. Scient Hortic 160:398–403

    Article  CAS  Google Scholar 

  • Monreal CM (2015) The chemistry of labile organic matter in soil solution: I. A model for metabolites of chemical signaling pathways associated with plant-microbial interactions. In: He Z, Wu F (eds) Labile organic matter— chemical compositions, function, and significance in soil and the environment. Soil Sci. Soc. Amer, Madison, WI. doi:10.2136/sssaspecpub62.2014.0073, Chapter 9

    Google Scholar 

  • Monreal CM, Schnitzer M (2015) Labile organic matter in soil solution: II. Separation and identification of metabolites from plant-microbial communication in soil solutions of wheat rhizospheres. In: He Z, Wu F (eds) Labile organic matter—compositions, function, and significance in soil and the environment. Soil Sci. Soc. Amer, Madison, WI. doi:10.2136/sssaspecpub62.2014.0074, Chapter 10

    Google Scholar 

  • Monreal CM, Schnitzer M (2013) The chemistry and biochemistry of organic components in the soil solutions of wheat rhizosphere. Adv Agron 121:179–251

    Article  CAS  Google Scholar 

  • Moslemy M, Hosseini H, Erfan M, Mortazavian AM, Fard RMN, Neyestani TR, Komeyli R (2014) Characterisation of spray-dried microparticles containing iron coated by pectin/resistant starch. Int J Food Sci Technol 49:1736–1742

    Article  CAS  Google Scholar 

  • Murphy LS, Ellis JR, Adriano DC (1981) Phosphorus-micronutrient interaction effects on crop production. J Plant Nutr 3:593–613

    Article  CAS  Google Scholar 

  • Nair PMG, Chung I (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ Sci Pollut Res 21:12709–12722

    Article  CAS  Google Scholar 

  • Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS (2012) Responses of root architecture development to low phosphorus availability: a review. Ann Bot 112:391–408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ockenden I, Dorsch JA, Reid MM, Lin L, Grant LK, Raboy V, Lott JNA (2004) Characterization of the storage of phosphorus, inositol phosphate and cations in grain tissues of four barley (Hordeum vulgare L.) low phytic acid genotypes. Plant Sci 167:1131–1142

    Article  CAS  Google Scholar 

  • Ostwald W (1897) Studien über die bildung und umwandlung fester Körper. Zeitschr Physikal Chemie 22:289–330

    CAS  Google Scholar 

  • Ozturk L, Yazici A, Eker S, Gokmen O, Rmheld V, Cakmak I (2008) Glyphosate inhibition of ferric reductase activity in iron deficient sunflower roots. New Phytol 177:899–906

    Article  CAS  PubMed  Google Scholar 

  • Pan B, Xing B (2012) Applications and implications of manufactured nanoparticles in soils: a review. Eur J Soil Sci 63:437–456

    Article  CAS  Google Scholar 

  • Pandey AC, Sanjay SS, Yadav RS (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exper Nanosci 5:488–497

    Article  CAS  Google Scholar 

  • Peng M, Hudson D, Schofield A, Tsao R, Yang R, Gu H, Bi YM, Rothstein SJ (2008) Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene. J Exp Bot 59:2933–2944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant-growth-promoting bacteria on nutrient acquisition process. A review Biol Fertil Soils 51:403–415

    Article  CAS  Google Scholar 

  • Pittman J (2005) Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytol 167:733–742

    Article  CAS  PubMed  Google Scholar 

  • Pokhrel LR (2013) Evaluation of colloidal stability and ecotoxicity of metal-based nanoparticles in the aquatic and terrestrial systems. Ph.D. Thesis, East Tennessee State University. p 205

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Envir 452–453:321–332

    Article  CAS  Google Scholar 

  • Pradhan S, Patra P, Mitra S, Dey KK, Jain S, Sarkar S, Roy S, Palit P, Goswami A (2014) Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J Agric Food Chem 62:8777–8785

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:13122–13131

    Article  CAS  PubMed  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamya V, Reddy RK, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Ramani S, Kannan S (1974) Effects of certain cations on manganese absorption by excised rice roots. Comm Soil Sci Plant Anal 5:435–439

    Article  Google Scholar 

  • Reich M, Aghajanzadeh T, De Kok LJ (2014) Physiological basis of plant nutrient use efficiency—concepts, opportunities and challenges for its improvement. In: Hawkesford MJ, De Kok LJ (eds) Nutrient use efficiency in plants: concepts and approaches. Plant Ecophysiology. Springer, New York, NY, USA, pp 1–27

    Google Scholar 

  • Rengel Z, Batten GD, Crowley DE (1999) Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crop Res 60:27–40

    Article  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interactions of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha-Santos TAP (2014) Sensors and biosensors based on magnetic nanoparticles. Trends Anal Chem 62:28–36

    Article  CAS  Google Scholar 

  • Roshan NM, Azarpour E, Moradi M (2011) Study effects of different nitrogen and micronutrients fertilizers rates on yield and yield components of rice. World Appl Sci J 13:419–423

    CAS  Google Scholar 

  • Ryan J, Rashid A, Torrent J, Yau SK, Ibrikci H, Sommer R, Ereneglu EB (2013) Micronutrient constraints to crop production in the Middle East–West Asia region: significance, research, and management. Adv Agron 122:1–84

    Article  CAS  Google Scholar 

  • Sailor MJ, Park JH (2012) Hybrid nanoparticles for detection and treatment of cancer. Adv Mater 24:3779–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samra JS, Benbi DK, Brar MS, Bansal, S (2006) Declining factor productivity and sustainability of crop production, Ith edn, Balanced fertilization for sustaining crop productivity. Proceed. Inter. Symposium, 22–25 Nov. Punjab Agricultural University, Ludhiana, India, pp 21–56, Int. Potash Inst., Horgen, Switzerland

    Google Scholar 

  • Sarkar AN, Wynjones RG (1982) Effect of rhizosphere pH on the availability and uptake of Fe, Mn and Zn. Plant Soil 66:361–372

    Article  CAS  Google Scholar 

  • Seneff S, Swanson N, Li C (2015) Aluminum and glyphosate can synergistically induce pineal gland pathology: connection to gut dysbiosis and neurological disease. Agric Sci 6:42–70

    CAS  Google Scholar 

  • Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant diseases and enhance crop yield. J Nano Part Res 17:92

    Article  CAS  Google Scholar 

  • Shao Y, Wang J, Wu H, Liu JL, Aksay IA, Lina Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036

    Article  CAS  Google Scholar 

  • Shi J, Abid AD, Kennedy IM, Hristova KR, Silk WK (2011) To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Pollut 159:1277–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla UC, Mukhi AK (1980) Ameliorative role of Zn, K, and gypsum on maize growth under alkali soil conditions. Am Soc Agron 72:85–88

    Article  CAS  Google Scholar 

  • Singh NB, Amist N, Yadav K, Singh D, Pandey JK, Singh SC (2013) Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. J Nanoeng Nanoman 3:353–364

    Article  CAS  Google Scholar 

  • Singh JP, Karamanos RE, Stewart JWB (1987) The zinc fertility of Saskatchewan soils. Can J Soil Sci 67:103–116

    Article  CAS  Google Scholar 

  • Singh MV (2008) Micronutrient deficiencies in crops and soils in India. In: Alloway BJ (ed) Micronutrients deficiencies in global crop production, 4th edn. Springer Science and Business Media. Reading, UK, pp 93–125

    Chapter  Google Scholar 

  • Smith D (1975) Effect of potassium topdressing a low fertility silt loam soil on alfalfa herbage yields and composition and soil potassium values. Agr J 67:60–64

    Article  CAS  Google Scholar 

  • Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7:36–47

    Article  Google Scholar 

  • Srivastava PC, Bhatt M, Pachauri SP, Tyagi AK (2014) Effect of zinc application methods on apparent utilization efficiency of zinc and phosphorus fertilizers under basmati rice-wheat rotation. Arch Agron Soil Sci 60:33–48

    Article  CAS  Google Scholar 

  • Stampoulis D, Saion K, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Sultan Y, DeRosa MC (2011) Target binding influences permeability in aptamer-polyelectrolyte microcapsules. Small 7:1219–1226

    Article  CAS  PubMed  Google Scholar 

  • Sultan Y, Walsh R, Monreal C, DeRosa MC (2009) Preparation of functional aptamer films using layer-by-layer self-assembly. Biomacromolec 10:1149–1154

    Article  CAS  Google Scholar 

  • Swaminathan S, Edwards BS, Kurpad AV (2013) Micronutrient deficiency and cognitive and physical performance in Indian children. Eur J Clin Nutrit 67:467–474

    Article  CAS  Google Scholar 

  • Teare ID, Peterson CJ, Law AG (1971) Size and frequency of leaf stomata in cultivars of Triticum aestivum and other Triticum species. Crop Sci 11:496–498

    Article  Google Scholar 

  • Tomalia DA, Reyna LA, Svenson S (2007) Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans Cell Deliv Therap Macromol 35:61–67

    Article  CAS  Google Scholar 

  • Unrine JM, Shoults-Wilson WA, Zhurbich O, Bertsch PM, Tsyusko V (2012) Trophic transfer of Au nanoparticles from soil along simulated terrestrial food chain. Envir Sci Technol 46:9753–9760

    Article  CAS  Google Scholar 

  • Verma TS, Minhas RS (1987) Zinc and phosphorus interaction in a wheat- maize cropping system. Fertil Res 13:77–86

    Article  CAS  Google Scholar 

  • Vo-Dinh T, Kasili P, Wabuyele M (2006) Nanoprobes and nanobiosensors for monitoring and imaging individual living cells. Nanomedic 2:22–30

    CAS  Google Scholar 

  • Wang P, Menzies NW, Lombi E, McKenna BA, Johannessen B, Glover CJ, Kappen P, Kopittke PM (2013) Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environ Sci Technol 47:13822–13830

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol l46:4434–4441

    Article  CAS  Google Scholar 

  • Warne MS, Heemsbergen D, Stevens D, McLaughlin M, Cozens G, Whatmuff M, Broos K, Barry G, Bell M, Nash D, Pritchard D, Penney N (2008) Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environ Toxicol Chem 27:786–792

    Article  PubMed  Google Scholar 

  • Waters BM, Sankaran RP (2011) Moving micronutrients from the soil to the seeds: gene and physiological processes from a biofortification perspective. Plant Sci 180:562–574

    Article  CAS  PubMed  Google Scholar 

  • Watson J-L, Fang T, Dimkpa CO, Britt DW, McLean JE, Jacobson A, Anderson AJ (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28:101–112

    Article  CAS  PubMed  Google Scholar 

  • Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43:5290–5294

    Article  CAS  PubMed  Google Scholar 

  • Witzany G (2010) Biocommunication and natural genome editing. Springer, New York, USA, p 213

    Book  Google Scholar 

  • World Health Organization - WHO (2009) Global health risks. Mortality and burden of disease attributable to selected major risks. Switzerland, Geneva, 60 p

    Google Scholar 

  • Wu ZY, Wang HJ, Zhuang TT, Sun LB, Wang YM, Zhu J (2008) Multiple functionalization of mesoporous silica in one-pot: direct synthesis of aluminum-containing plugged SBA-15 from aqueous nitrate solutions. Adv Funct Mater 18:82–94

    Article  CAS  Google Scholar 

  • Xu Y, Wu Z, Zhang L, Lu H, Yang P, Webley PA, Dongyuan Z (2009) Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal Chem 81:503–508

    Article  CAS  PubMed  Google Scholar 

  • Yang HM, Deng Y, Du C, Jin S (2010a) Novel synthesis of ordered mesoporous materials Al-MCM-41 from bentonite. Appl Clay Sci 47:351–355

    Article  CAS  Google Scholar 

  • Yang HM, Tang AD, Ouyang J, Mann S (2010b) From natural attapulgite to mesoporous materials: methodology, characterization and structural evolution. J Phys Chem B 114:2390–2398

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Liu C, Gao F, Su M, Wu X, Zheng I, Hong F, Yang P (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88

    Article  CAS  PubMed  Google Scholar 

  • Yim G, Wang HH, Davies J (2007) Antibiotics as signalling molecules. Philos Trans R Soc London B 362:1195–1200

    Article  CAS  Google Scholar 

  • Yuvaraj M, Subramanian KS (2014) Controlled release fertilizer of zinc encapsulated by a manganese hollow core shell. Soil Sci Plant Nutr 2014:1–8

    Google Scholar 

  • Zebarth BJ, Warren CJ, Sheard RW (1992) Influence of the rate of nitrogen fertilization on the mineral content of winter wheat in Ontario. J Agric Food Chem 40:1528–1530

    Article  CAS  Google Scholar 

  • Zhang X, Chabot D, Sultan Y, Monreal C, DeRosa MC (2013) Target-molecule-triggered rupture of aptamer-encapsulated polyelectrolyte microcapsules. Appl Mater Interf 5:5500–5507

    Article  CAS  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea- Torresdey JL (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61:11945–11951

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Virtual Fertilizer Research Center for funding and support, as well as Agriculture and Agri-Food Canada for their encouragement to complete this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Monreal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monreal, C.M., DeRosa, M., Mallubhotla, S.C. et al. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fertil Soils 52, 423–437 (2016). https://doi.org/10.1007/s00374-015-1073-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1073-5

Keywords

Navigation