Skip to main content
Log in

Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Cereal production in southern Chile is based on ash-derived volcanic Andisols, which present suboptimal levels of available selenium (Se). Strategies are needed to improve Se content in cereal crops and concomitantly improve the nutritional quality of grain. Here, we investigated the occurrence of Se-tolerant bacteria (STB) in Andisols and evaluated Se tolerance and accumulation in STB. The inoculation of wheat with STB and the contributions of these bacteria to Se content in plants were also evaluated under greenhouse conditions. The results showed that Se amendment of Andisols stimulated some bacterial groups (Paenibacillaceae and Brucellaceae) but inhibited others (Clostridia, Burkholderiales, Chitinophagaceae and Oxalobacteraceae), as revealed by denaturing gradient gel electrophoresis. Furthermore, we found four STB isolates that displayed 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase activity) and that carried the acdS gene as revealed by PCR. The selected STB were characterised as Stenotrophomonas, Bacillus, Enterobacter and Pseudomonas according to partial sequencing of the 16S rRNA gene. After 24 h of culture in nutrient broth, the selected STB showed the ability to grow in high Se concentrations (5 and 10 mM) and to accumulate elemental Se in micro- and nanospherical deposits, transforming 50–80 % of the Se initially added. Greenhouse experiments with wheat showed that Se associated with STB (micro- and nanospheres of elemental Se and other intracellular forms) can be translocated into leaves of wheat plantlets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonioli P, Lampis S, Chesini I, Vallini G, Rinalducci S, Zolla L, Righetti PG (2007) Stenotrophomonas maltophilia SeITE02, a new bacterial strain suitable for bioremediation of selenite-contaminated environmental matrices. Appl Environ Microbiol 21:6854–6863

    Article  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  PubMed  CAS  Google Scholar 

  • Azaizeh HA, Hemons HJ (2003) The potential of rhizosphere microbes isolated from a constructed wetland to biomethylate selenium. Environ Qual 32:55–62

    Article  CAS  Google Scholar 

  • Banuelos GS, Lin ZQ, Arroyo I, Terry N (2005) Selenium volatilization in vegetated agricultural drainage sediment from the San Luis Drain, Central California. Chemosphere 60:1203–1213

    Article  PubMed  CAS  Google Scholar 

  • Barret M, Morrissey JP, O’Gara F (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47:729–743

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Bebien M, Chauvin JP, Adriano JM, Grosse S, Vermeglio A (2001) Effect of selenite on growth and protein synthesis in the phototrophic bacterium Rhodobacter sphaeroides. Appl Environ Microbiol 67:4440–4447

    Article  PubMed  CAS  Google Scholar 

  • Blaha D, Prigent-Combaret C, Sajjad Mirza M, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 55:455–470

    Article  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cartes P, Gianfreda L, Mora ML (2005) Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil 276:359–367

    Article  CAS  Google Scholar 

  • Cartes P, Jara AA, Pinilla L, Rosas A, Mora ML (2010) Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Ann Appl Biol 156:297–307

    Article  CAS  Google Scholar 

  • Combs GF (2001) Selenium in global food systems. Brit Jour of Nutrit 85:517–547

    Article  CAS  Google Scholar 

  • De Ridder-Duine AS, Kowalchuk GA, Klein Gunnewiek PJA, Smant W, van Een JA, de Boer W (2005) Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol Biochem 37:349–357

    Article  Google Scholar 

  • De Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:563–573

    Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmiun stress by cadmiun-resistant rhizobacteria. Soil Biol Biochem 40:74–84

    Article  Google Scholar 

  • Dhanjal S, Cameotra SS (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact. doi:10.1186/1475-2859-9-52

  • Di Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233–241

    Article  PubMed  Google Scholar 

  • Dungan RS, Yates SR, Frankenberger WT (2003) Transformation of selenate and selenite by Stenotrophomonas maltophilia isolated from a seleniferous agricultural drainage pond sediment. Environ Microbiol 5:287–295

    Article  PubMed  CAS  Google Scholar 

  • Fairweather-Tait SJ, Collings R, Hurst R (2010) Selenium bioavailability: current knowledge and future research requirements. Am J Clin Nutr 91:1484–1491

    Article  Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, Shah S, Dixon DG, Glick BR (2006) The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant Soil 288:309–318

    Article  CAS  Google Scholar 

  • Fernandez-Martinez, Charlot L (2009) Selenium environmental cycling and bioavailability: a structural chemist point of view. Rev Environ Sci Biotechnol 8:81–110

    Article  CAS  Google Scholar 

  • Fesharaki PJ, Nazari P, Shakibaie M, Rezaie S, Banoee M, Abdollahi M, Shahverdi AR (2010) Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz J Microbiol 41:461–466

    Article  CAS  Google Scholar 

  • Fordyce F (2007) Selenium geochemistry and health. Ambio 36:94–97

    Article  PubMed  CAS  Google Scholar 

  • Garbisu C, Carlson D, Adamkiewicz M, Yee B, Wong J, Resto E, Leighton T, Buchanan T (1999) Morphological and biochemical responses of Bacillus subtilis to selenite stress. Biofactors 10:311–319

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Mohod A, Paknikar K, Jain R (2008) Isolation and characterization of selenite- and selenate-tolerant microorganisms from selenium-contaminated sites. World J Microbiol Biotechnol 24:1607–1611

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  PubMed  CAS  Google Scholar 

  • Haudin CC, Fardeau ML, Amenc L, Renault P, Ollivier B, Leclerc-Cessac E, Staunton S (2007) Responses of anaerobic bacteria to soil amendment with selenite. Soil Biol Biochem 39:2408–2413

    Article  CAS  Google Scholar 

  • Hoagland D, Arnon DI (1938) The water culture method for growing plants without soil. Bull Calif Agric Stat 346

  • Hunter W, Mater D (2011) Pseudomonas seleniipraecipitatus sp. nov.: a selenite reducing c-Proteobacteria isolated from soil. Curr Microbiol 62:565–569

    Article  PubMed  CAS  Google Scholar 

  • Ike M, Takahashi K, Fujita T, Kashiwa M, Fujita M (2000) Selenate reduction by bacteria isolated from aquatic environment free from selenium contamination. Water Res 34:3019–3025

    Article  CAS  Google Scholar 

  • Jorquera M, Hernández M, Martínez O, Marschner P, Mora ML (2010) Detection of aluminium tolerance plasmids and microbial diversity in the rhizosphere of plants grown in acidic volcanic soil. Eur J Soil Biol 46(255):263

    Google Scholar 

  • Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65:4734–4740

    PubMed  CAS  Google Scholar 

  • Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch (2010) Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108:1471–1484

    Article  PubMed  CAS  Google Scholar 

  • Kumpulainen J, Raittila AM, Lehto J, Koivistoinen P (1983) Electrothermal atomic absorption spectrometric determination of selenium in foods and diets. J AOAC Intern 66:1129–1135

    CAS  Google Scholar 

  • Lampis S, Ferrari A, Cunha-Queda C, Alvarenga P, Di Gregorio S, Vallini G (2009) Selenite resistant rhizobacteria stimulate SeO3 2 phytoextraction by Brassica juncea in bioaugmented water-filtering artificial beds. Environ Sci Pollut Res 16:663–670

    Article  CAS  Google Scholar 

  • Lenz M, Lensa NL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407:3620–3633

    Article  PubMed  CAS  Google Scholar 

  • Losi ME, Frankenberger WT (1997) Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl Environ Microbiol 63:3079–3084

    PubMed  CAS  Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley D (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  • Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    PubMed  CAS  Google Scholar 

  • Mora ML, Alfaro MA, Jarvis SC, Demanet R, Cartes P (2006) Soil aluminium availability in Andisols of southern Chile and its effect on forage production and animal metabolism. Soil Use Manage 22:95–101

    Article  Google Scholar 

  • Mora ML, Pinilla L, Rosas A, Cartes P (2008) Selenium uptake and its influence on the antioxidative system of white clover as affected by lime and phosphorus fertilization. Plant Soil 303:139–149

    Article  CAS  Google Scholar 

  • Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL, Van Elsas JD, de Brijn FJ (eds) Molecular microbial ecology manual. Kluwer, Dordrecht, pp 1–27

    Google Scholar 

  • Nannipiere P, Ascher J, Ceccherini MT, Landi L, Pietramellara G (2008a) Recent advances in functional genomics and proteomics of plant associated microbes. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, Heidelberg, pp 215–241

    Chapter  Google Scholar 

  • Nannipiere P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G, Valori F (2008b) Effects of root exudates on microbial diversity and activity in rhizosphere soils. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, Heidelberg, pp 339–365

    Chapter  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Article  PubMed  CAS  Google Scholar 

  • Peace TA, Brock KV, Stills HFJRl (1994) Comparative analysis of the 16s rRNA gene sequence of the putative agent of proliferative ileitis of hamsters. Int J Syst Bacteriol 4:832–835

    Article  Google Scholar 

  • Prakash NT, Sharma N, Prakash R, Raina K, Fellowes J, Pearce C, Lloyd J, Pattrick R (2010) Aerobic microbial manufacture of nanoscale selenium: exploiting nature's bio-nanomineralization potential. Biotechnol Lett 31:1857–1862

    Article  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextration. Chemosphere 62:741–748

    Article  Google Scholar 

  • Rayman MP (2002) The argument for increasing selenium intake. Proc Nutr Soc 61:203–215

    Article  PubMed  CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez H, Vessely S, Shah S, Glick B (2008) Effect a nickel-tolerant ACC deaminase-producing Pseudomonas strain on growth of nontransformed and transgenic canola plants. Curr Microbiol 57:170–174

    Article  PubMed  CAS  Google Scholar 

  • Roux M, Sarret G, Pignot-Paintrand I, Fontecave M, Coves J (2001) Mobilization of selenite by Ralstonia metallidurans CH34. Appl Environ Microbiol 67:769–773

    Article  PubMed  CAS  Google Scholar 

  • Siddique T, Okeke B, Zhang Y, Arshad M, Han S, Frankenberger W (2005) Bacterial diversity in selenium reduction of agricultural drainage water amended with rice straw. J Environ Qual 34:217–226

    PubMed  CAS  Google Scholar 

  • Spallholz JE, Hoffman DJ (2002) Selenium toxicity: cause and effects in aquatic bird. Aquat Toxicol 57:27–37

    Article  PubMed  CAS  Google Scholar 

  • Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Microbiol 60:107–130

    Article  CAS  Google Scholar 

  • USGS (2011) Minerals yearbook selenium and tellurium. Available at http://minerals.usgs.gov/minerals/pubs/commodity/selenium/mcs-2011-selen.pdf

  • Vallini G, Di Gregori S, Lampis S (2005) Rhizosphere-induced selenium precipitation for possible applications in phytoremediation of Se polluted effluents. Verlag der Zeitschrift fur Naturforschung 60:349–356

    CAS  Google Scholar 

  • Wend-Potthoffr K, Koschorreck M (2002) Functional groups and activities of bacteria in a highly acidic volcanic mountain stream and lake in Patagonia, Argentina. Microb Ecol 43:92–106

    Article  Google Scholar 

  • Wittwer A, Araneda P, Ceballos A, Contreras P, Andaur M, Bohwald H (2002) Actividad de glutation peroxidasa (GSH-Px) en sangre de bovinos a pastoreo de la IX Region, Chile y su relacion con la concentracion de selenio en el forraje. Arch Med Vet 34:49–57

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2008) Rhizosphere bacteria help plants to tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  PubMed  Google Scholar 

  • Zhang J, Wang H, Yan X, Zhang L (2004) Comparison of short-term toxicity between nano-Se and selenite in mice. Life Sci 76:1099–1109

    Article  Google Scholar 

  • Zhang Y, He L, Chen Z, Zhang W, Wang Q, Qian M, Sheng X (2011a) Characterization of ACC deaminase-producing endophytic bacteria isolated from cooper-tolerant plants and their potential in promoting the growth and cooper accumulation of Brassica napus. Chemosphere 83:57–62

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, He L, Chen Z, Zhang W, Wang Q, Qian M, Sheng X (2011b) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hard Mater 186:1720–1725

    Article  CAS  Google Scholar 

  • Zhuang XL, Chen J, Shim H, Bai ZH (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financed by FONDECYT No. 1100625. Jacquelinne Acuña thanks the CONICYT Ph.D. scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María de la Luz Mora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acuña, J.J., Jorquera, M.A., Barra, P.J. et al. Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biol Fertil Soils 49, 175–185 (2013). https://doi.org/10.1007/s00374-012-0705-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-012-0705-2

Keywords

Navigation