Skip to main content
Log in

Promotion of plant growth by phytohormone-producing endophytic microbes of sugar beet

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Three plant-growth-promoting isolates of endophytic bacteria from sugar beet roots produced indole-3-acetic acid (IAA) in vitro in a chemically defined medium. The three isolates were selected from 221 endophytic bacteria isolated from surface-disinfected beet roots and evaluated for potential to produce IAA and to promote beet growth under gnotobiotic and glasshouse conditions. The inoculation of roots of beet by three selected bacteria isolates significantly increased plant height fresh and dry weights and number of leaves per plant, as well as levels (p < 0.01) of phytormones compared with control plants. In the glasshouse test, the three selected bacterial isolates were recovered from inside roots in all samplings, up to 8 weeks after inoculation, indicating that the roots of healthy beet may be a habitat for these endophytic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2

Similar content being viewed by others

References

  • Akello J, Dubois T, Coyne D, Kyamanywa S (2008) Effect of endophytic Beauveria bassiana on populations of the banana weevil, Cosmopolites sordidus, and their damage in tissue-cultured banana plants. Entomol Exp Appl 129:157–165. doi:10.1111/j.1570-7458.2008.00759.x

    Article  Google Scholar 

  • Aravind R, Kumar A, Eapen SJ, Ramana KV (2009) Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett Appl Microbiol 48:58–64. doi:10.1111/j.1472-765X.2008.02486.x

    Article  PubMed  CAS  Google Scholar 

  • Bacon CW, Hinton DM (2002) Endophytic and biological control potential of Bacillus mojavensis and related species. Biol Control 23:274–284. doi:10.1006/bcon.2001.1016

    Article  CAS  Google Scholar 

  • Barretti PB, De Souza RM, Pozza AAA, Pozza EA, De Carvalho JG, De Souza JT (2008) Increased nutritional efficiency of tomato plants inoculated with growth-promoting endophytic bacteria. Rev Bras Cienc Do Solo 32:1541–1548. doi:10.1590/S0100-06832008000400018

    CAS  Google Scholar 

  • Bhuvaneswari V, Kathiravan G, Gangadevi V, Muthumary J (2006) Extraction and estimation of indo, E-3-acetic acid (IAA) from some endophytic and pathogenic coelomycetes. Asian J Microbiol Biotechnol Environ Sci 8:243–248

    CAS  Google Scholar 

  • Bressan W, Borges MT (2004) Delivery methods for introducing endophytic bacteria into maize. BioControl 49:315–322. doi:10.1023/B:BICO.0000025372.51658.93

    Article  Google Scholar 

  • Caitriona D, Wilson LW, McFadden H (2004) Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum. Mol Plant Microbe Interact 17:654–667. doi:10.1094/MPMI.2004.17.6.654

    Article  Google Scholar 

  • Cleland RE (1990) Auxin and cell elongation. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Kluwer, Dordrecht, pp 132–148

    Google Scholar 

  • Dai C, Yu B, Xu Z, Yuan S (2003) Effect of environmental factors on the growth and fatty acid composition of five endophytic fungi from Sapium sebiferum. Chin J Appl Ecol 14:1525–1528

    CAS  Google Scholar 

  • Dai CC, Yu BY, Li X (2008) Screening of endophytic fungi that promote the growth of Euphorbia pekinensis. Afr J Biotechnol 7:3505–3510

    CAS  Google Scholar 

  • El-Tarabily KA, Nassar AH, Hardy GESJ, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J Appl Microbiol 106:13–26. doi:10.1111/j.1365-2672.2008.03926.x

    Article  PubMed  CAS  Google Scholar 

  • Frankenberger WT Jr, Poth M (1987) Biosynthesis of indole-3-acetic acid by the pine ectomycorrhizal fungus, Pisolithus tinctorius. Appl Environ Microbiol 53:2908–2913

    PubMed  CAS  Google Scholar 

  • Garrity GM, Holt JG (2001) The road map to the manual. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey's manual of systematic bacteriology, vol 1, Secondth edn. Springer, New York, pp 119–166

    Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26:192–195. doi:10.1104/pp. 26.1.192

    Article  PubMed  CAS  Google Scholar 

  • Guinn G, Brummett DL, Beier RC (1986) Purification and measurement of abscisic acid and indole-acetic acid by high performance liquid chromatography. Plant Physiol 81:997–1002. doi:10.1104/pp. 81.4.997

    Article  PubMed  CAS  Google Scholar 

  • Halda-Alija L, Johnston TC (1999) Diversity of culturable heterotrophic aerobic bacteria in pristine stream bed sediments. Can J Microbiol 45:879–884. doi:10.1139/cjm-45-10-879

    Article  PubMed  CAS  Google Scholar 

  • Harish S, Kavino M, Kumar N, Saravanakumar D, Soorianathasundaram K, Samiyappan R (2008) Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against banana bunchy top virus. Appl Soil Ecol 39:187–200. doi:10.1016/j.apsoil.2007.12.006

    Article  Google Scholar 

  • He H, Qiu SX, Cai XQ, Guan X, Hu FP (2004) Colonization in plants and identification of endophytic bacteria BS-1 and BS-2 from Capsicum annuum. Acta Microbiol Sin 44:13–18

    Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480. doi:10.1046/j.1365-2672.2003.02161.x

    Article  PubMed  CAS  Google Scholar 

  • Kodaka H, Mizuochi S, Teramura H, Nirazuka T (2005) Comparison of the compact dry IC method with the standard pour plate method (AOAC Official Method 966.23) for determining aerobic colony counts in food samples. J AOAC INtern 88:1702–1713

    CAS  Google Scholar 

  • Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151:67–73. doi:10.1016/S0168-9452(99)00199-5

    Article  CAS  Google Scholar 

  • Maria GL, Sridhar KR (2003) Endophytic fungal assemblage of two halophytes from west coast mangrove habitats, India. Czech Mycol 55:241–251

    Google Scholar 

  • Matthews KR, Oliver SP, King SH (1990) Comparison of Vitek Gram-positive identification system with API Staph Trac system for species identification of staphylococci of bovine origin. J Clin Microbiol 28:1649–1651

    PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572. doi:10.1016/j.plaphy.2004.05.009

    Article  PubMed  CAS  Google Scholar 

  • Nejad P, Johnson PA (2000) Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biol Control 18:208–215. doi:10.1006/bcon.2000.0837

    Article  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801. doi:10.1128/AEM.68.8.3795-3801.2002

    Article  PubMed  CAS  Google Scholar 

  • Rahman MH, Saiga S (2005) Endophytic fungi (Neotyphodium coenophialum) affect the growth and mineral uptake, transport and efficiency ratios in tall fescue (Festuca arundinacea). Plant Soil 272:163–171. doi:10.1007/s11104-004-4682-6

    Article  CAS  Google Scholar 

  • Raja P, Balachandar D, Sundaram SP (2008) Genetic diversity and phylogeny of punk-pigmented facultative methylotrophic bacterai isolated from the pjyllosphere of tropical plants. Biol Fertil Soils 45:45–53. doi:10.1007/s00374-008-0306-2

    Article  Google Scholar 

  • Sapak Z, Meon S, Ahmad ZAM (2008) Effect of endophytic bacteria on growth and suppression of Ganoderma infection in oil palm. Int J Agric Biol 10:127–132

    Google Scholar 

  • Seyring M, Vogt G (2000) Influencing growth of endophytic bacteria and quality of shoots in plant tissue cultures of Argyranthemum frutescens. Gartenbauwissenschaf 65:115–120

    Google Scholar 

  • Shin DS, Park MS, Jung S, Lee MS, Lee KH, Bae KS, Kim SB (2007) Plant growth-promoting potential of endophytic bacteria isolated from roots of coastal sand dune plants. J Microbiol Biotechnol 17:1361–1368

    PubMed  Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, Van Der Lelie DD (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757. doi:10.1128/AEM.02239-08

    Article  PubMed  CAS  Google Scholar 

  • Ting ASY, Meon S, Kadir J, Radu S, Singh G (2008) Endophytic microorganisms as potential growth promoters of banana. BioControl 53:541–553. doi:10.1007/s10526-007-9093-1

    Article  Google Scholar 

  • Von Aderkasa P, Lelub MA, Labelb P (2001) Plant growth regulator levels during maturation of larch somatic embryos. Plant Physiol Biochem 39:495–502. doi:10.1016/S0981-9428(01)01271-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Lou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Lou, K. & Li, C. Promotion of plant growth by phytohormone-producing endophytic microbes of sugar beet. Biol Fertil Soils 45, 645–653 (2009). https://doi.org/10.1007/s00374-009-0376-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-009-0376-9

Keywords

Navigation