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Abstract

An edge Roman dominating function of a gra@his a function f: E(G) —

{0, 1, 2} satisfying the condition that every edgavith f(e) = 0 is adjacent to some
edgee’ with f(¢') = 2. The edge Roman domination numbeGofdenoted byy(G),

is the minimum weightv(f) = Yog) f(€) of an edge Roman dominating function
f of G. This paper disproves a conjecture of Akbari, Ehsani, Ghagaly Khalil-
abadi and Sadeghian Sadeghabad stating tt@atisfa graph of maximum degree
onn vertices, thery;(G) < fﬁfﬂ- While the counterexamples having the edge Ro-
man domination numberg=2n, we prove thai=2n + 2 is an upper bound for
connected graphs. Furthermore, we provide an upper bounlkdg@dge Roman dom-
ination number ok-degenerate graphs, which generalizes results of Akbhsak,
Ghajar, Jalaly Khalilabadi and Sadeghian Sadeghabad. $tiepabve a sharp upper
bound for subcubic graphs.

In addition, we prove that the edge Roman domination numbigotanar graphs
onnvertices is at mosg n, which confirms a conjecture of Akbari and Qajar. We also
show an upper bound for graphs of girth at least five that islPeenbeddable in sur-
faces of small genus. Finally, we prove an upper bound fqulggdhat do not contain
K23 as a subdivision, which generalizes a result of Akbari anghiQan outerplanar

graphs.
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1 Introduction

The articles by ReVell€ 10, 11] in the Johns Hopkins Magegsuggested a new vari-
ation of domination called Roman domination, see dlso [dRJah integer programming
formulation of the problem. Since then, there have beerrakadicles on Roman domina-
tion and its variations, such as [1[ 4[5, 7]. Emperor Corstamad the requirement that an
army or legion could be sent from its home to defend a neighgdocation only if there
was a second army which would stay and protect the home. Tiherg are two types of
armies, stationary and traveling. Each vertex (city) hasmay must have a neighboring
vertex with a traveling army. Stationary armies then dort@rtheir own vertices, and a
vertex with two armies is dominated by its stationary arnmg &s open neighborhood is
dominated by the traveling army.

We may formulate the problem in terms of graphs. Graphs awplsiin this paper. A
Roman dominating functioof a graphG is a functionf : V(G) — {0, 1, 2} such that every
vertexv with f(v) = 0 is adjacent to some vertexwith f(u) = 2. Theweightof a Roman
dominating functionf is the valuen(f) = >y f(v). TheRoman domination numbef
G, denoted bygr(G), is the minimum weight of a Roman dominating functiorGof

Recently, Roushini Leely Pushpam and Malini M&i [9] ini@dtthe study of the edge
version of Roman domination. Aedge Roman dominating functiaf a graphG is a
function f: E(G) — {0, 1, 2} such that every edgewith f(e) = 0 is adjacent to some
edgee with f(e¢) = 2. Theweightof an edge Roman dominating functidns the value
W(f) = Yk f(€). Theedge Roman domination numbarG, denoted byyr(G), is the
minimum weight of an edge Roman dominating functiorGf In fact, the edge Roman
domination number d& equals the Roman domination number of its line graph. Howeve
we are interesting in finding upper boundgf(G) in terms of|V(G)| instead of|[E(G)|.

So reducing problem to the line graph is usually not helpdublbtain a non-trivial upper
bound.

Roushini Leely Pushpam et dll[9] established some pragseofi edge Roman domi-
nating functions and determined the edge Roman dominatintbers of paths and cycles:
Yr(Pn) = Lz—:fj andyi(C,) = rz—g‘]. Akbari et al. [2] gave an upper bound for a graph in terms
of its maximum degree and order(G) < 522-n for graphsG of maximum degreé onn
vertices. They then conjectured the following.




Conjecture 1. [2] If G is a graph of maximum degreeon n vertices, themr(G) < [525n].

They also established several results for special grapfalaws. For a graplG of
maximum degred on n vertices, ifG has a perfect matching, thef(G) < %n. If Tis
a tree ofn vertices, theﬂ%] < yp(T) < [@] = L%J where((T) is the number
of leaves, and the equality holds if and onlyTif= P,. If n > 2, theny(P,0P,) = [4]
andy,(Ps0OP,) = 2n. If n > 1, theny,(Q,) > Z-". Akbari et al. [3] gave the following
two results on planar graphs. @ is outerplanar, theny(G) < ‘gn. If G is planar and

claw-free, theny,(G) < Sn. They conjectured that the claw-freeness in the abovetresul

can be removed.

Conjecture 2. [3] If G is a planar graph of n vertices, ther(G) < Sn.

We address extremal problems on edge Roman dominatiorsipdlper. We disprove
Conjecturd Il in Section 2 and prove an essentially tight uppend fork-degenerate
graphs in Section 3. More precisely, we prove thelG) < %N(GN for k-degenerate

graphsG, andy,(G) < &=2|V(G)| + 52 for graphsG of maximum degre@.

- 2A-1 2A-1
In Section 4, we prove that(G) < §|V(G)| for subcubic graph& other thanKss.
This bound is attained by infinitely many graphs. Furthemmtris result not only improves
the mentioned result whef = 3 but also is a preparation for a result in the next section.

In Section 5, we confirm Conjecturé 2 and show that the sameruppund holds for
graphs 2-cell embeddable in the plane or the projectiveeplélve then improve the upper
bound for graphs of girth at least five that can be drawn inased of small genus. The
second result takes the advantage of the result on subcmbgin Section 4.

Finally, in Section 6, we prove tha4(G) < §|V(G)| for graphs that do not contain
a subgraph isomorphic to a subdivisionkfs, which generalizes a result of Akbari et
al. [3] on outerplanar graphs. Note th@y attains the boun@n, and the coﬁicient‘g‘ of n
cannot be improved by excluding finitely many graphs:Gdte the graph obtained from
the disjoint union ok 5-cycles by adding a vertex adjacent to a vertex of each Ecien
¥R(G) = 4k = 2|V(G)| — 2. We will prove that the mentioned example is more or less the
only example for graphs that attain this @@@ent ofn. More precisely, we shall prove that
the upper bound can be improved if no 5-cycle in the graph easeparated from the rest
of the graph by deleting at most one vertices.

Now we fix some notation that will be used in the rest of thisgrapLetG be a
graph. For ever)X C V(G), we defineN(X) to be the set of vertices @& — X adjacent
to a vertex inX, and we defind[X] to be N(x) U X. WhenX consists of only one vertex



v, we denoteN(X) and N[X] by N(v) andN[v], respectively. In a grapls, for a subset
S ¢ V(G) the subgraph induced by & the graphG[S] with vertex setS and edge set
{xy € E(G): x,y € S}. Thedeletionof S from G, denoted byG — S, is the induced
subgraphG[V(G) — S]. A matching Mof G is a subset of edges @ such that no two
edges inM are adjacent. The set of all end vertices of the edgés is denoted by (M).

A subset of vertices istableif every pair of vertices in the set are non-adjacent. Foryeve
integerk, we say thaG is k-degeneraté every subgraph o6 contains a vertex of degree
at mostk.

2 Counterexamplesto Conjecture(l

This section constructs counterexamples to Conje€iureel findt consider the com-
plete bipartite grapl, s with partite setsX = {Xq, X2, ..., X} and¥ = {y1, Yo, ..., Ys}.

Theorem 3. If 1 <r < s, thenyi(K,s) = 2rforr < sandyi(Kis) = 2r — 1forr = s.

Proof. Forr < s, the functionf defined byf(xy) = 2for1 <i <r andf(xy;) = 0

for all other edgesy; is an edge Roman dominating function of weight @hich gives
Yr(Krs) < 2r. Forr = s, a modification orf (xy;) = 1 gives thaty,(K,s) < 2r — 1.

On the other hand, suppo$ds an edge Roman dominating functionkyfs with the
minimum weight. Assume there aseedgese with f(e) = 2. If a > r, thenyg(K;s) >
w(f) > 2a > 2r, and we are done. So we may assume #hat r. ThenX contains at
leastr — a vertices andyY contains at leas$ — a vertices that are not incident to any edge
ewith f(e) = 2. Hence there are (- a)(s — a) edgese’ having f(¢/) = 1. These give
w(f) >2a+ (r —a)(s—a).

If r < s, thens—a > 2 and soyr(K;s) = W(f) > 2a+2(r —a) = 2r. If r = s, then
2r — 1> yp(Krs) = W(f) > 2a+ (r — a@)?. Thatis, 0> (r — a— 1)?. This implies that
r—a-1=0andyy(K:s) =w(f) =2r - 1. O

Notice thatK;, has maximum degrea = r andn = 2r vertices. By Theorerl 3,
YR(Kr) = 2r — 1 = Z=Lnwhich is the same as the upper bourékn] = [2r - 2+ 2] =

r+1
2r—-1in Conjecturd'ﬂl While the gap betwe%g—n and A+ln being 2A(A+l)n the reasons
for the above values to be the same Aréeing close tan and taking ceiling. Similar
situation happens fd; ;,1, which has maximum degre®e=r + 1 andn = 2r + 1 vertices.
By TheoreniByg(Krri1) = 2r = &=2n WhICh is the same gs2;n1 = [2r — 1+ 357 =2r.
Also, the gap betweeﬁ%n and A+ln is

A+1

(A+1)(2A i
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To get counterexamples, we modify complete bipartite gsaplobtain graphs whose
A are far away froom. Consider the grap,, obtained fronmt copies ofK;,,; by adding
edgesy ¥y for 1 < i < twith yi'* = y}, where the partite sets of theh K, ., are
Xi = {X, X, ..., X} andY; = {y, ,,...,¥ ). See Figuréll fo6, .

Figure 1: The grapl, 4.

Theorem 4. Ifr > 1and t> 1, theny(G, ) = 2rt.

Proof. The functionf defined byf(xijyij) =2forl<i<tand1< j<r,andf(e) =0 for
all other edgesgis an edge Roman dominating function of weight Zoy;(G; ;) < 2rt.

On the other hand, let be an edge Roman dominating function®f; with the min-
imum weight. For every K i < t, leta be the number of edgeswith f(e) = 2 in the
i-th Krr1, and lethy = 1if f(y,,¥;"™) = 2, andb; = 0 otherwise. We definky = b;. Then
X; has at least ma®,r — a;} vertices andy; has at least md®,r + 1 — a — b — bi_1}
vertices that are not incident to any edgevith f(e) = 2. Hence there are at least
maxo,r —a}max0,r + 1 — g — bj — bj_;} edges’ havingf(¢) = 1. These give

t

t
w(f) > Z(Za,- + 2bj + max0,r —a}max0,r+1—a — b — bi_3}) = Z li,

i=1 i=1
wherel; = 2a, + by + bi_1 + maxX0,r — a}maxX0,r + 1 —a — b, — b;_1}. It is suficient to
prove thatl; > 2r for 1 < i < t. Suppose to the contrary thiat< 2r for somei. Sog < r
andr+1-a -b—b_,>0. Thenl, =23 +b+b_,+(r—a)r+1-a-b—b_) =
2r+(r—a —1)(r -a - b —bi_;). Observe thatr(— a; — 1)(r — a — b — bi_;) > 0, since
eitherr=a,+1orr—a — b —bi_; > 0. Sol; > 2r as desired. O

Notice that the grap, ; has maximum degret = r + 1 andn = (2r + 1)t vertices. By
Theorenf#y(Gry) = 2rt = 2=2n > 2-n = [A:nT whenr > 2 andt a multiple ofr + 2.
This disproves Conjectufé 1. In fact, we shall prove tﬁaf is asymptotic the optimal

codficient ofn for the upper bound of the edge Roman domination in Section 3.

3 k-degenerategraphs

Recall that a grapl® is k-degenerate if for every subgraph of G, the minimum
degrees(H) of H is at mostk. While the counterexamples in the previous section having

5



the edge Roman domination numbésZn, this section shall prove that this is an upper
bound fork-degenerate graphs. It also establishes a close upper Bgeimo+ = for
connected graphs.

We first need several useful lemmas that will be frequentlgliad in the rest of the
paper. Aremovable tripleof a graphG is a triple S, M, M,), whereS is a nonempty subset
of V(G) andM, andM; are disjoint matchings i®[S] such that every edgee E(G) — M,
incident to a vertex irs is adjacent to some edge M,. We define theatio p(S, M,, M;)

2[Ma|+|My]

of a removable triple$, M,, M,) to beT.

Lemma 5. If a graph G has a removable tripleS, M,, M,) with p(S, M,, M;) < «a, then
Yr(G) < YR(G = S) + alS|.

Proof. LetG’ = G — S and letf’ be an edge Roman dominating function@&fwith the
minimum weight. Define a functiof: E(G) — {0, 1, 2} by setting

f(e), if e E(G):;

2, if ee My;
f(e) = s eeT

1, if ee My;

0, otherwise.

Supposeeis an edge withf (e) = 0. If e € E(G’), theneis adjacent to an edge € E(G')
with f(e) = f’(¢) = 2. If e ¢ E(G’), theneis incident to some vertex i8 and so by the
definition of a removable triple is adjacent to some edgee M, with f(€) = 2. Hence,
f is an edge Roman dominating function®fand soy;(G) < yr(G') + 2IM| + [M4] <
Yr(G = S) + alS|. |

Lemma 6. For every removable tripl¢S, My, M;) of G, if y5(G — S) < a|V(G - S)| but
YR(G) > alV(G)], thenp(S. Mz, My) > o

Proof. Suppose to the contrary th&iS, M,, M;) < a for some removable tripleés( M, M,)
of G. By Lemmdby(G) < yr(G-S)+alS| < o|V(G-S)|+alS| = a|V(G)|, a contradiction
to the assumption that,(G) > a|V(G)|. |

Lemma7. If vis a vertex of degree d in a graph G and M is a matching [N®)], then
G has a removable triplés, M,, M;) with |S| < 2d + 1 and

2d - 2|M| 2d

S, My, M) < < )
P Ma M) < ST 2m = 2d+ 1

Proof. Observe thati;25: decreases whelM| increases. By adding edges irth we
may without loss of generality assume tihdis a maximal matching iG[N(v)].
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Let X = N(v) - V(M) andY = N(X) — N[v]. SinceM is a maximal matching in
G[N(Vv)], X is stable inG[N(v)]. We defineB = G[X U Y] — (E(G[X]) U E(G[Y])) and M’ to
be a maximum matching @. Let X’ = XN V(M) andX” = X - X'; letY = YN V(M)
andY” =Y - Y’ . Notice that there are no edges betwe&nandY”, while possibly there
are edges betweeft! andY” and edges betweeft’ andY’. See Figurél2.

Let M, = MU M” andS = N[v] UV(M,). If [X”| = 0, then §, My, 0) is a removable
triple with ratio M2 = 29-AML "¢ %) = 1 sayX” = {w}, then 6, My, {vw}) is a remov-

|S| 2d+1-2|M|
H : s 2Mol+1 . 2d-1-2|M| 2d-2|M| ’” ”
able triple with ratio ST < ZarLaM- If [X”| > 2, then for everyw € X",

S|

2d-2|M|-2|X""|+2 2d-2
(S, M, U {vw}, 0) is a removable triple with ratla% AN < oo O
v
\VZi
oo 4| [ - glere)
M
by

Ml
Figure 2: The vertew exists only wherX” # 0.

Theorem 8. If G is a k-degenerate graph of n vertices, the(G) < Zlf'jl

Proof. The theorem clearly holds when= 1. Suppos& is a minimum counterexample
to the theorem. That i€ is ak-degenerate graph with y,(G) > 2k+l|V(G)| butyi(H) <
2|(+1|V(H)| for every proper subgrapH of G, which is alsok-degenerate. Sind® has a
vertex of degreel < k, Lemmd¥ implies the existence of a removable tripl&afith ratio
at most;2%- < -2 Itis a contradiction to Lemnid 6. O

We remark that every tree is 1-degenerate, so the upper U_égmdbr a tree ofn
vertices[[2] is also a consequence of Theorém 8. In additienresult in[[2] on graphs of
maximum degread is a consequence of Theoréin 8, since a graph of maximum dagsee
A-degenerate. The objective of the rest of this section imfrove this bound in terms of
the maximum degree for connected graphs.

Lemma9. Let G be a graph of maximum degraeof n vertices. If every component of G

contains a vertex of degree less thathenyy(G) < %n

Proof. Suppose thab is a minimum counterexample to the lemma. Since every compo-
nent of G — S contains a vertex of degree less thaior everyS ¢ V(G), by Lemmd5,
every removable triple o6 has ratio greater thaﬁ%ﬁ. However,G contains a vertex of



degree less than. So by Lemmal7, there exists removable triple with ratio a$lng§f‘—l)

1)+1°?
a contradiction. O

Theorem 10. If G is a connected graph of maximum degreen n vertices, themy(G) <

2A-2 2
2A-1 n+ 2A-1°

Proof. According to Lemma&l7G has a removable triple&S( M., M;) with |S| < 2A + 1 and

p(S, M2, M;) < 2. SinceG is connected, every component®f- S contains a vertex of

degree less than. Therefore, by Lemmi 9/4(G - S) < £=2(n - |S|). Then, by Lemma

= 2A-1
=~ 2020 2A _ 2A-2 2 2A-2 2
[, Yr(G) < 2A—l(n ISI) + 2A+l|S| = oant 4A2—1|S| S oAt ;g O

The requirement for the connectivity &f is necessary. Consider the grap, » of
maximum degre@ onn = 2At vertices. By Theorerl 4(tKx») = (2A - 1)t = %n >
2A-2 2

SN+ 5 whent is large.

4 Subcubic graphs

Recall that Akbari([2] showed that;(G) < Sn for every subcubic grap® of n ver-
tices. The main theorem of this section shows Katis the only connected graph attaining
this bound. Note that Theoreml11 is tightyggG.:) = ‘g‘n for every positive integet, by
Theoreni 4.

Theorem 11. If G is a subcubic graph of n vertices contains ng;las a component, then
¥R(G) < 2n.

Proof. Supposés is a minimum counterexample to the theorem. T@as connected. By
Lemmd®, every removable triple has ratio greater tglﬁy LemmdT G has no vertex of
degree at most two, S8 is cubic.

Claim 1. Gis triangle-free.

Proof. Suppose to the contrary th@thas a triangleqnv,v,. Let ug be the third neighbor
of vo. If Up Is adjacent to bothl; andv,, thenG is K4 and cannot be a counterexample.
Soug has a neighbowg other thanv; andv,. Then (vo, V1, V2, Ug, Wo}, {V1V2, UgWo}, 0) IS @
removable triple of rati¢, a contradictions

Now, choose a shortest cydla VoviVs . .. Vigi-1Vo Of length|C| # 1 (mod 3). Note that
the existence of such a cycle follows from Theorem 1in [6]iclimplies that every cubic
graph has a cycle of length a multiple of 3. In the followingg indices for the vertices in
C are taken moduliC|. By Claim 1,|C| > 5.
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Claim 2. (i) If |C|] = 2 (mod 3), therC has no chord. (ii) IfC| = 0 (mod 3), therC has at
most two chords. Any chord & is of the formv,v,, 3p; and if C has two chords, then they
areVyVa,ap andvy,1Va, 143, for some integera andb.

Proof. SupposeC has a chora, whose end vertices dividg into two pathsQ, and Q..
Each pathQ, together withe form a cycleD, of length shorter thafC|. By the choice of
C, eachD;| = 1 (mod 3) and so eadk);| = 0 (mod 3). This is possible only whe@| = 0
(mod 3), which gives (i) and that a chord is of the fovgu, 3.

Suppos€eC has two chords;vi,sj andvi Vi,3j, say 0= i < i’ < |C| - 1. AsG is cubic,
these two chords are disjoint. If these two chords are noasing, say G i <i+3j <i’ <
i” + 3j’ <|C| - 1, thenv;, Vi,3j, Vi, Vi-y3j divide C into four pathsR;, Ry, Rs, R, whereC =
ViR Vi3 RoVir RaVir 43 RaVi. SINCERy UViViyzj, RoU Ry U ViViysj UV Viryj @andRs UV Vi 5p are
cycles shorter tha@, |R;| = |Ry|+|Rs|+1 = |Rs| = 0 (mod 3). But theiR, UR; UR, UV, Vi, 3
is a cycle shorter tha@ with length 0 (mod 3), contradicting the choice@f If these two
chords are crossing, say=0i < i’ <i+3j <i'+3] <|C|-1, thenv, Vi, Vi,3j, Vir,3j divide
C into four pathsS;, Sy, Ss, S4, whereC = viS;Vi SoVi3;S3Virisj Savi. If the two chords
are not of the desired form, th&h U vivi..3y U Sz U Vivi,3j is a cycle shorter tha@, so
IS4 + 1S3| = 2 (mod 3). ButlS;| = |S3| (mod 3), sgS,| = |Ss| = 1 (mod 3). Similarly,
IS,| = 1S4l = 1 (mod 3), sdC| = 1 (mod 3), a contradiction.

Finally, if there are three chords for which each pair is efftrmv,vy, 3n andva, 1Va, 1430,
then it is the case th#f| = 6 and the chords amvs, vivs, Vovs. This implies thatG is in
factKs3, violating the assumption of the theorem.

By Claim 2, we may assume that eitlf@has no chord, oC| = 0 (mod 3) andC has
one chordvyVsa,1 Or two chordsvyvaa, 1, VoVaa,p. FOr anyy; that is not an end of a chord
of C, it has a neighbou; not inC. In particular,ug, Us, . . ., Uz exist, where B = |C| — 3
when|C| = 0 (mod 3) and B= |C| — 2 when|C| = 2 (mod 3). In the following, whem; is
mentioned we always assume that it exists.

Claim 3. If i # j butu = uj, then mirfi — j|, |C| - li — j|} = 2.

Proof. Verticesv; andyv; divide C into two pathsR; andRy. If min{|i — jI,|C| - |i — jI} > 2,
then for eaclr = 1,2, R together with the path;uv; form a cycleD, of length shorter
than|C|. By the choice ofC, each|D,| = 1 (mod 3) and so eadR;| = 2 (mod 3). These
imply that|C| = 1 (mod 3), a contradictiori]

By Claim 3,up, Us, . . ., U, are distinct except possibly = uz when|C| = 2 (mod 3).

If up = Uz, then|C| = 2 (mod 3), saC is chordless, andg, U_3, U_g, ..., U_3 exist and are
distinct. So we may without loss of generality assume tHatigls, . . ., us. are distinct.



Let
V3 ={Vo,Vs,...,Vs} and Uz = {Up, Us, .. ., Ug}.

Claim 4. The vertex sets; is stable.

Proof. Suppose to the contrary thad, is adjacent taus, for some 0< 3a < 3b < 3r.
Verticesvs, andvs, divide C into two pathsQ,, Q, with |Q,| = 3b - 3aand|Q,| = |C| —
3b+ 3a. For eachr = 1, 2, pathQ; together with the patit,usz,Us,Va, form a cycleD, with
ID¢| = 0 or 2 (mod 3). By the choice &, |C| < 3b-3a+3 andC| < |C|-3b+3a+3. Hence
IC| < 6. Consequentha = 0 andb = 1. If |C| = 6, then ¥(C) U Us, {UgUs, V1V5, V4Vs}, 0) IS
a removable triple of rati(g < ‘5‘, a contradiction. I{C| = 5, thenu, exists and is distinct
from ug, uz by Claim 1, so V(C) U Uz U {ua}, {UgUs, V1V2, V4Us}, 0) is a removable triple of

ratio g < 2, a contradictions]

Now, choose a maximal subset, of Uz such that eachi; € U; has a neighbor
ws ¢ V(C) U Uz and all suchwy’s are distinct. LelU; = Uz — Uj andW; = {wsy: Uy €
Uzl IfIC| = 0 (mod 3), then leS = V(C) U Uz UW;, My = {Vg,1V5.2: 0 < i <
% - 1} U {uzwg: ug € Uzl andM; = {vzug: uz € U7} By the maximality ofUs,
(S, M, M,) is a removable triple. Howeves(S, M,, M;) = g:g:::ﬂz: < ‘g, a contradiction.
Therefore|C| = 2 (mod 3). By Claim 2y _; exists. By Claim 3ug-1 ¢ Us. LetS’ =
V(C)UU3zU{Ugr1}UWG, M) = {V3i,1V5i,2: 0 < < %—1}U{V3r+1U3r+1}U{U3iW3i1 Us € Uz}
andM; = {vzus: Uy € UJ}. By the maximality ofU;, (S, M2, M;) is a removable triple.

4 ”
FCH)-Ug 4 L
Howeverp(S’, M., M!) = E=——=_ < 2 g contradiction. O
!p( b} 2 1) %(|C|+l)—|Ué’| = 5

5 Graphson surfaces of small genus

The first objective of this section is to prove Conjeclure Zuifaceis a 2-connected
manifold. LetG be a graph andl a surface. Every connected component efG is called
aface We say thaG is 2-cell embeddable i@ if G can be drawn itz such that every face
is homeomorphic to an open disk.

Let G be a graph that is 2-cell embeddable in a surfac@Ve fix a 2-cell embedding
of G in X. We denote the set of faces of this embeddindp§). Then for every facd
of this embedding, there exists a closed wallGitthat contains all edges incident with
We define thalegreeof a facef to be the length of the shortest such walk. We say that a
vertex is a@-vertexif the degree of this vertex is Similarly, we say that a face istdaceif
the degree of this face ts
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Theorem 12. If G is a graph of n vertices that can be 2-cell embedded in theeor the
projective plane, them;(G) < %n.

Proof. The theorem is clearly true when= 1. Suppose thdb is a counterexample with
the minimum size ofV(G)| to the theorem. In particulag is connected. LeX be a surface
in whichG can be 2-cell embedded. We fix a 2-cell embeddin@ of X. In addition, every
removable triple of5 has ratio greater tha%by Lemmd.6. This implies that every vertex
of G has degree at least four by Lempla 7.

If there exists a 4-vertex incident to a 3-face, the®[N(v)] has a matchingV of

2x4-2x1  _ 6

size one. By Lemm@]7, there is a removable triple with ratimast ;555 = 2,

contradiction. Hence, no 4-vertex is incident to a 3-face.

a

If there exists a 5-vertexincident to at least three 3-faces, tH@fN(v)] has a match-
ing M of size two. By Lemma@l7, there is a removable triple with ratimost:2>22, = 8,
a contradiction. So every 5-vertex is incident to at most 3Afaces.

Now we shall derive a contradiction by means of the discimgrgiethod.

For everyx € V(G)UF(G), we define the charge ckj(on x to be degg)—4. According
to Euler’'s formula, the sum of the charge is

D (deg) -4)+ > (deg(f) - 4) = —4V| + 4E| - 4F| <0,

veV(G) feF(G)

For every vertew incident to exactlyt 3-faces witht > 0, we movedegtﬂ units of

charge to each 3-face incident to it. We denote the new clargeachx € V(G) U F(G)
by cH(X). Clearly, ¥’ vevc)urc) Ch(®¥) = X sev)ure) SN (X).

We shall prove that clix) > O for everyx € V(G) U F(G). It is obviously true unless
xis a 3-face. Leff be a 3-face. Note that chl = -1, and we proved thdt is not incident
to any 4-vertex. Furthermore, as every 5-vertex is inciderst most two 3-faces, every
5-vertex sends at Ieaétunit of charge to each 3-face incident to it. According to the
discharing rulef receives at Ieasﬁ;—“ > % units of charge from eactivertex incident to
it for d > 6, and receives at Ieaé}ﬁ‘ = % units of charge from each 5-vertex incident to it.
Therefore, ci{(f) > 0. Consequently, G ¥ .vcurc) ChX) = 2ievieure CN(X) = 0, a
contradiction. O

The girth of a graph is the minimum length of a cycle in the graph. (Théhgs
infinite if the graph has no cycle.) The other main theorenhisf $ection is the following.
We improve the upper bound fro&n to g‘n if we additionally assume the graph has girth
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at least five. In fact, our result generalizes to surfaceseolig larger than the projective
plane.

Theorem 13. LetX be the plane, projective plane, torus or Klein bottle. If Giigraph of
girth at least 5 on n vertices that can be 2-cell embedded] theny,(G) < zn.

Proof. The theorem holds far = 1. Suppose th#& is a counterexample with the minimum
size of|V(G)| to the theorem. In particulag is connected. LeX be a surface of minimum
genus in whiclG can be 2-cell embedded. We fix a 2-cell embeddin@ of X. By Lemma
[6, every removable triple @b has ratio greater thag'l So every vertex o has degree at
least three by Lemnid 7.

Since the girth ofG is at least five, every 5-face is surrounded by a cycle of lengt
five. We claim that every 5-face = (vo, V1, V2, V3, V) IS incident to at most two 3-vertices.
Suppose to the contrary thétis incident to at least three 3-vertices. So two 3-vertices
incident with f, sayvy andv,, are non-adjacent. Let € N(vi) — {v;: 0 < j <4} for0 <
I < 2. SinceG has no 3-cycles and no 4-cycleg, Uy, Uy, Vo, Vi1, Vo, V3, V4 are eight distinct
vertices. Sincely andu, has degree at least three &adhas no 3-cycles and no 4-cycles,
we may choos&/, andw, such thatv; € N(u;) — {vj: 0 < j <4} fori = 0,2 andwp # W,.
See Figurel3. LeB = {vg, V1, V2, V3, V4, Ug, U1, Un, Wo, Wo} @and My = {UgWg, V1Uz, UsWo, VaVya}.
Then S, M,, 0) is a removable triple of ratié0 = j—s‘, a contradiction. This proves the claim.

LNO IJl rz
0 0 Vl 2 2

4 3

Figure 3: A 5-face incident to at least three 3-vertices.

For everyx € V(G) U F(G), define the charge ck) on x to be degk) — 4. According
to Euler’s formula, the sum of the charges is

D" (deg) - 4)+ ) (deg(f) - 4) = -4\V| + 4E| - 4IF| < 0,

veV(G) feF(G)

Now we describing the discharging rule. We shall move cleajdaces to vertices
incident to it. But we should notice that some face is not@unded by a cycle. For every
face f, let Wy be a shortest closed walk containing all edges incident Wjthnd letW;
be the walk obtained fromV; by deleting the last vertex and the last edge. For every
vertexv incident tof, definet;, to be the number such thaappears;, times inW;. The

discharging rule is that for every fadeincident to some 3-vertex, mo g(tff)u“‘tf,v units of
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charge to each 3-vertexincident tof, where the summation in the denominator is over all
3-verticesu incident tof. We denote the number of the units of new chargestof ch (x).

We shall prove that cfx) > 0 for everyx € V(G) U F(G). Observe that it is gticient
to prove this for 3-vertices. For every 3-vertexch(v) = -1, andv is incident to three
faces of degree at least 5 by the assumption. The vertegeives at Ieasﬁa—“tf,v > %tf,v
units of charge from a-face incident to it ford > 6, and receives at Ieaégi‘tf,\, = %tf,\,
units of charge from each 5-face incident to it by the presiolaim. Then ct{v) > O for
every 3-vertex, sincey’ scgg) try = 3.

Since 0> ¥ .ve)urc) ChX) = Xieveure S (X) = 0, we know that ct{x) = O for
everyx € V(G) U F(G). By Theorenl_1ll, there exists a vertexf degree at least four.
But cH(v) > deg{) — 4 > 0 asG has girth at least five. S08 },cvc)ur) C(X) > 0, a
contradiction. This proves thak(G) < j—.)‘n. m|

Based on Theorenis112 and 13, we expect the following contioids. Note that
the upper bound in the following tends %omhenk tends to infinity. It is an evidence that
supports the conjecture, since the behavior of a planahgsétp large girth is like a tree.

Conjecture 14. If G is a planar graph of girth at leas3k + 2 on n vertices, then(G) <

2k+2
3k+2 n.

6 Graphswithout K;3-subdivisions

A graph isouterplanarif it can be embedded in the plane such that every vertex is
incident to the infinite face. Akbari et al.I[3] showed tha(G) < ‘gn for every outerplanar
graph ofn vertices. In this section, we generalize the theorem tolgrapthoutK, -
subdivisions, which is a proper superclass of outerplaregttgs. Recall thats attains the
boundg‘n, and the coﬁicientg‘ of ncannot be improved by excluding finitely many graphs.
We shall prove that the upper bound can be improved if no feaycthe graph can be
separated from the rest of the graph by deleting at most aiee®

A subdivisionof a graphH is a graph that can be obtained frdtby repeatedly
deleting an edgey and adding a new vertexadjacent tak, y. The following lemma is an
immediate consequence of Kuratowski's theorem [8].

Lemmal5. A graph G is an outerplanar graph if and only if G does not camtasubgraph
isomorphic to a subdivision of Jor K; 3.
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Let G be an outerplanar graph. We fix an embeddin@ @f the plane such that every
vertex is incident to the infinite face. We define tinéernal dualgraphD(G) of G to
be the multigraph such th&t(D(G)) is the set of faces d& except the infinite face, and
E(D(G)) = {uve: u,v e F(G), e e E(G), eis incident tou andv}. Note thatD(G) might not
be simple by the definition. But the following lemma showst théG) is simple and is a
tree, wher(s is 2-connected.

Lemma 16. If G is a 2-connected outerplanar graph that is embedded in the plawch s
that every vertex is incident to the infinite face, thei@pis a tree.

Proof. SinceG is 2-connectedD(G) has no loops. Suppose to the contrary that there is a
cyclevyvs - - - vy in D(G), wheren > 2. Then there is a vertaxof G inside the cycle, but
uis not incident to the infinite face, a contradiction. |

A cut-vertexin a graph is a vertex such that deleting this vertex from tia@lg results
in at least two components. Block Bin a graphG is a maximal subgraph @& of order
at least two such tha has no cut-vertex. It is well-known that every graph has a&lblo
containing at most one cut-vertex. And we call such a blockradblock

Theorem 17. Let G be a graph of n vertices that does not contain a subgrapimorphic
to a subdivision of Ks. If G does not contain £as a component and there does not exist
a vertex v such that G v contains G as a component, they(G) < ;3;n.

Proof. The theorem is true whem< 4. We suppose th& is a counterexample with the
minimum size ofV(G)|. SoG is connected and contains at least five vertices.

We say that a triple§, M,, M,) is usefulif it is a removable triple with ratio at m0§°{t
such thaG[S] is connected an® — S does not contain€s as a component.

Claim 1. There does not exist a useful triple.

Proof. Suppose thatg, M,, M,) is a useful triple such th@$| is as large as possible. &%

is a minimum counterexample, there exists a vevtsuch thats — (S U {v}) containCs as

a component. LaP be the set of components Gf- (S U{v}) isomorphic taCs. SinceG-v
does not contais as a component, there exists an edge betvieamd each member ¢f

in G. As S is connected, we have th@l < 2, otherwises contains a subgraph isomorphic
to a subdivision 0Kj3, a contradiction. Le§’ = {v} U g V(C). Clearly, there exists
M, € E(G[S’]) such that &', M, 0) is a removable triple o6 — S with ratio at most%.
Observe thaG - (S U §’) does not contai@s as a component. S&U S’, M, U M7, My)

is a useful triple withS U S’| > |S], a contradictiond
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Claim 2. For everyS c V(G) such thaG[S] is connected an@® — S contains a component
C isomorphic taCs, we have thafN(S) N V(C)| < 2 and|N(V(C)) n S| > 2.

Proof. FirstIN(S)NV(C)| < 2, otherwisds contains a subgraph isomorphic to a subdivision
of Ky3, a contradiction. AlsdN(V(C)) N S| > 2, otherwise, eithe6 containsCs as a
component, oG contains a vertex such that deleting this vertex results goraponent
isomorphic toCs. O

Claim 3. For everyS c V(G) such that3[S] is connected anfiN(V(G) — S)| < 2, there are
at most two components @& — S isomorphic toCs.

Proof. By Claim 2, there exist two verticesy € S such that bottx, y have neighbors in
each component @-S isomorphic taCs. SinceG does not contain a subgraph isomorphic
to a subdivision oKy 3, there are at most two components®f S isomorphic taCs. O

Claim 4. No end-block ofG is isomorphic tcCs.

Proof. Suppose thaB is an end-block of5 isomorphic toCs. Letv be the vertex irB
adjacent to a vertex not iB. Letu € N(v) — V(B) and letS = V(B) U {u}. LetC be the
set of components @b — S isomorphic toCs. By Claim 3,|C| < 2. For every membeC
in C, let Mc be a maximal matching i€. Then 8 U e V(C), {uv} U Ucec Mc, 0) is a

removable triple with ratigld=l < 2

sere < 10 SincelC] < 2. So this removable triple is useful, a

contradiction.d

Claim 5. No removable triple $, M,, M;) of G with ratio at most% such thatG[S] is
connected anfN(V(G) — S)| < 1.

Proof. If there exists a removable tripl&(M,, M;) of G with ratio at most}—l such thaG[S]
is connected, anfiN(V(G) — S)| < 1, then §, M,, M,) is useful by Claim 4, contradicting
Claim 1.0

Claim 6. G is not a cycle and no end-block Gfis a cycle.

Proof. Clearly,G is not a cycle. Suppose that some end-blBak G is a cycle. By Claim
5,|V(B)| # 5. Then it is easy to see that there exist two matchivigsM, of B such that
M, contains an edge incident with the vertexNi(V(G) — V(B)) and {/(B), M., M;) has
ratio at most;%, contradicting Claim 50

Claim 7. Every vertex ofG has degree at least two.

Proof. Let v be a vertex of degree one, and lebe the neighbor of. SinceG contains
at least four vertices has a neighbow other thanv. We assume thaw is chosen to
minimize the number of components®@f- {u, v, w} isomorphic toCs. If G — {u, v, w} does
not containCs as a component, thefu( v, w}, {u, w}, 0) is an useful triple. S& - {u, v, w}
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containsCs as a component. Note that for each compozat G — {u, v, w} isomorphic to
Cs, N(C) = {u, w}, by Claim 2. As we choos& to minimize the number of components of
G—-{u, v, w}isomorphic tdCs, there exists only one componé&hof G-{u, v, w} isomorphic
to Cs by Claim 3. Hence,{(1, v, w} U V(C), {uw} U M, 0) is a useful triple, wherd/, is a
maximal matching irC. O

Claim 8. No end block ofG is isomorphic taK,.

Proof. Suppose that there exists an end-bl8c&f G isomorphic toK,. Since|V(G)| > 5,
B # G. Letv be the vertex ilN(V(G) — V(B)). And lete be an edge oB incident withv
ande the edge oB not adjacent t@. Then {/(B), {€}, {¢'}) is a removable triple with ratio
2 contradicting Claim 50

Claim 9. Every end-block of is outerplanar but not an edge.

Proof. Let B be an end-block os. By Claim 7,B is not an edge. Suppose thais not
outerplanar. By Lemmia_1® contains a subgraph isomorphic to a subdivisioKgf Let

H be a subgraph dB isomorphic to a subdivision df4. If [V(H)| > 5, thenH contains a
subgraph isomorphic to a subdivisionkf 3, a contradiction. S¢/(H)| = 4 andH = K,.
But by Claim 8,B # K4, so there existg € V(B)-V(H). SinceBis 2-connected, there exist
two paths inB from v to V(H) only intersecting irv. However, it implies thaB contains a
subgraph isomorphic to a subdivisionk{s, a contradictiond

Claim 10. There does not exist a path of four verticesdrsuch that every vertex is of
degree two irG.

Proof. Let P = v;V,V3v, be a path of four vertices i@ such that every vertex if has degree
two in G. Letv € N(v;) — V(P). Note thatv, is not adjacent tw, otherwise G contains
an end-block ofs isomorphic to the 5-cycle, contradicting Claim 4. I&tbe the graph
obtained fronG—{vi, v,, vs} by adding the edgev,. Itis easy to see that(G) < ;3;|V(G)| if
Yr(G') < %|V(G’)|. As G is a minimum counterexample af is connected, eithé€d’ = Cs
or there exists a vertexin G’ such thatz —w contains a component isomorphic@g. For
the former,G is the 8-cycle; for the latteCg is an end-block of5. Both cases contradict
Claim 6.0

Let B be an end-block os. By Claim 9, B is outerplanar but not an edge. We fix
an embedding oB such that all vertices are incident with the infinite facet Tebe the
internal dual ofB. By Claim 6,T contains at least two vertices. For every V(T), let f;
be the face oB corresponding ta. If G # B, let the root ofT be a vertex such thatf;
contains the vertex if(V(G) — V(B)); otherwise, let the root of be an arbitrary vertex.

Claim 11. For every non-root leafof T, the boundary of; is a 5-cycle.

16



Proof. Let S be the boundary cycle of. By Claim 10,|V(S)| < 5. Suppose tha$ is

a 3-cycle or a 4-cycle. Laf be the set of components & — V(S) isomorphic toCs.

IC] > 1, otherwise there exists an useful trip\($), M,, M;) for someM, and M;. By
Claim 3,|C| < 1. LetC be the member of. Note that there does not exist a component
B of G — (V(S) U V(C)) such thatN(C’) n (V(S) U V(C))| > 2, otherwiseB contains a
subgraph isormorphic to a subdivisionkfs. As B is 2-connectedd = G[V(S) U V(C)].

But (V(B), M5, M}) is a removable triple with ratio at mostsuch that is connected and
IN(V(G) — V(B))| < 1. Itis a contradiction to Claim 51

Let s be a leaf ofT that is as far as from the root df as possible, and lgi be the
neighbor ofsin T. Let S be the subset &f(G) such that5[S] is the union of the boundary
of f, and the boundary of; for each childc of p. Note that eacle is a leaf by our choice
of p. Also, |V(f, N fc)| = 2 for every childc of p. Let Q be the boundary cycle df,.

Clearly,G[S] is connected. Suppose that there exists a compdhehG — S isomor-
phic toCs. ThenN(C) € S. SinceB is 2-connectedN(C)| > 2. By Claim 2,|N(C)| = 2.
Sincec is a leaf for every chilat of p, N(C) c V(f,). Note thatC bounds a face that corre-
sponds to a leaf of . Also, C does not contain the vertex M(V(G) — V(B)). So the leaf
of T corresponds t€ is farther thars from the root ofT, a contradiction. S& — S does
not containCs as a component. Note thii(V(G) — S) € V(Q). Sincesis the leaf of T
farthest from the rootN(V(G) — S)| < 2. SinceG does not contain a subgraph isomorphic
to a subdivision oK, if IN(V(G) — S)| < 2, then there two vertices are adjacent. Met
be a maximal matching of the minimum size such tatontains an edge incident with all
vertices inN(V(G) — S). If [V(Q)| # 1 (mod 3), then leM, = M andM; = 0; otherwise,
pick an edgee in M not incident with a vertex ilN(V(G) — S)), and letM; = {e} and
M, = M — M;. For every childc of p, there exists an edgg not incident with any vertex
of Q such thaG[S] - (M U J. &) has no edges, where the union runs through all children
of p. LetM* = | J. &, where the union runs through all childrewnf p. If [V(Q)| = 0 (mod
3), then the ratio of$, M, U M*, My) = £ . If [V(Q)| = 2 (mod 3), thenS| > |Q| + 3 > 8,

so the ratio of §1, My U M*, My) is ZYQEE2MT _ 3 By Claim 1,)V(Q)| = 1 (mod 3).

VQI+3M*|  — 4°

2AMal+My| _ 3VQE2MIL o 1 3 g i
Note that==5~= = “Toaw = 5+ swoawy = 3 sincelV(Q)l > 4. So if

we can choose the edge M, such that this edge is not incident with the boundary.of

for some childc of p, then §, M, U M*, M,) is a removable triple and hence is useful.
Therefore|M*| > M2 On the other handS( M, U M*,0) is a removable triple with
ratio% + m, so 16> |V(Q)| + 3IM*| > 2V(Q)| — 1. Hence|V(Q)| = 4 or 7.
Similarly, if S = V(G), then|M*| > %, so|V(Q)| = 4 and 2< |M*| < 3, but it is easy

to check thaty,(G) < %n in this case. Consequently,# V(G), and eithefV(Q)| = 4 and
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1< |M* <3, 0r|V(Q)| = 7 and|M*| = 2.

DenoteQ; by viVs ... V(g V1. Without loss of generality, we may assume thaj C
N(V(G) — S) C {v1,V»}. Letw be a vertex ilN(V(G) — S) N N(v;) such thatG — (S U {w})
has as less components isomorphicCipas possible. Le§’ = S U {w} and letN =
{VaioVzii3: 0 < < % — 1}. For every childc of p, there exists an edg& such that
G[S] - (NU{viw} U | . &) has no edges, where the union runs through all childmip.
Note that &', NU{v,w}U| . €, 0) is a removable triple with ratio at mo%lwhere the union
runs through all childrew of p, since|M*| > %. ThereforeG — (S U {w}) contains a
component isomorphic t6s. Note thatw € N(C) for every componert of G — (S U {w})
isomorphic taCs. If there exists a compone6@tof G — (S U {w}) isomorphic taCs satisfies
thatN(C) C {w, v1}, then there exista/ € N(V(G) — S) N N(v;) such thalG — (S U {w'})
has no component isomorphic @3, contradicting the choice of. So every component
C of G — (S U {w}) isomorphic toCs satisfies thaN(C) = {w, v»} by Claim 2. But in this
case, there is at most one such component, othe@vigmtains a subgraph isomorphic to
a subdivision oK, 3. Then there exist&’ € V(C) N N(v,) — S such thaG — (Su {w”}) has
no components isomorphic @;. DefineN’ = {ViViy(q), Vai+1Vaisz 1 <1 < % -1}
For every childc of p, there exists an edgg such thaG[S'] — (N" U {vo,w”’} U | . €) has
no edges, where the union runs through all childref p. Then S U {w”}, N’ U {v,w”} U
Uc€/,0) is a useful triple, where the union runs through all chitde®f p, a contradiction.
This proves the theorem. O

Theorem 18. y;(G) < :‘31” for every graph G on n vertices containing no subgraph isemo
phic to a subdivision of k.

Proof. Suppose thab is a counterexample with the minimum size|\¢{G)| of this theo-
rem. By Theorern 17, eith& containCs as a component, or there existsuch thatG —v
containsCs as a component. For the former, @be a component db isomorphic toCs,
then {/(C), M, 0) is a removable triple o& with ratio ‘5‘, whereM, is a maximal matching
of Cs. For the latter, leC’ be the component d& — v isomorphic toCs, then lete be an
edge ofG with endv and a vertex” of C’, and letM;, be the maximal matching @&’ - v’
of size one, then|(C’) U {v}, M, U {€¢}, 0) is a removable triple o& with ratio less tharg.
Either case contradict Lemrhh 6. This proves the theorem. |
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