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Abstract

An edge Roman dominating function of a graphG is a function f : E(G) →

{0, 1, 2} satisfying the condition that every edgee with f (e) = 0 is adjacent to some

edgee′ with f (e′) = 2. The edge Roman domination number ofG, denoted byγ′R(G),

is the minimum weightw( f ) =
∑

e∈E(G) f (e) of an edge Roman dominating function

f of G. This paper disproves a conjecture of Akbari, Ehsani, Ghajar, Jalaly Khalil-

abadi and Sadeghian Sadeghabad stating that ifG is a graph of maximum degree∆

on n vertices, thenγ′R(G) ≤ ⌈ ∆
∆+1n⌉. While the counterexamples having the edge Ro-

man domination numbers2∆−2
2∆−1n, we prove that2∆−2

2∆−1n + 2
2∆−1 is an upper bound for

connected graphs. Furthermore, we provide an upper bound for the edge Roman dom-

ination number ofk-degenerate graphs, which generalizes results of Akbari, Ehsani,

Ghajar, Jalaly Khalilabadi and Sadeghian Sadeghabad. We also prove a sharp upper

bound for subcubic graphs.

In addition, we prove that the edge Roman domination numbersof planar graphs

onn vertices is at most67n, which confirms a conjecture of Akbari and Qajar. We also

show an upper bound for graphs of girth at least five that is 2-cell embeddable in sur-

faces of small genus. Finally, we prove an upper bound for graphs that do not contain

K2,3 as a subdivision, which generalizes a result of Akbari and Qajar on outerplanar

graphs.
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1 Introduction

The articles by ReVelle [10, 11] in the Johns Hopkins Magazines suggested a new vari-

ation of domination called Roman domination, see also [12] for an integer programming

formulation of the problem. Since then, there have been several articles on Roman domina-

tion and its variations, such as [1, 4, 5, 7]. Emperor Constantine had the requirement that an

army or legion could be sent from its home to defend a neighboring location only if there

was a second army which would stay and protect the home. Thus,there are two types of

armies, stationary and traveling. Each vertex (city) has noarmy must have a neighboring

vertex with a traveling army. Stationary armies then dominate their own vertices, and a

vertex with two armies is dominated by its stationary army, and its open neighborhood is

dominated by the traveling army.

We may formulate the problem in terms of graphs. Graphs are simple in this paper. A

Roman dominating functionof a graphG is a functionf : V(G) → {0, 1, 2} such that every

vertexv with f (v) = 0 is adjacent to some vertexu with f (u) = 2. Theweightof a Roman

dominating functionf is the valuew( f ) =
∑

v∈V(G) f (v). TheRoman domination numberof

G, denoted byγR(G), is the minimum weight of a Roman dominating function ofG.

Recently, Roushini Leely Pushpam and Malini Mai [9] initiated the study of the edge

version of Roman domination. Anedge Roman dominating functionof a graphG is a

function f : E(G) → {0, 1, 2} such that every edgee with f (e) = 0 is adjacent to some

edgee′ with f (e′) = 2. Theweightof an edge Roman dominating functionf is the value

w( f ) =
∑

e∈E(G) f (e). Theedge Roman domination numberof G, denoted byγ′R(G), is the

minimum weight of an edge Roman dominating function ofG. In fact, the edge Roman

domination number ofG equals the Roman domination number of its line graph. However,

we are interesting in finding upper bound ofγ′R(G) in terms of |V(G)| instead of|E(G)|.

So reducing problem to the line graph is usually not helpful to obtain a non-trivial upper

bound.

Roushini Leely Pushpam et al. [9] established some properties of edge Roman domi-

nating functions and determined the edge Roman dominating numbers of paths and cycles:

γ′R(Pn) = ⌊2n
3 ⌋ andγ′R(Cn) = ⌈2n

3 ⌉. Akbari et al. [2] gave an upper bound for a graph in terms

of its maximum degree and order:γ′R(G) ≤ 2∆
2∆+1n for graphsG of maximum degree∆ onn

vertices. They then conjectured the following.
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Conjecture 1. [2] If G is a graph of maximum degree∆ on n vertices, thenγ′R(G) ≤ ⌈ ∆
∆+1n⌉.

They also established several results for special graphs asfollows. For a graphG of

maximum degree∆ on n vertices, ifG has a perfect matching, thenγ′R(G) ≤ 2∆−1
2∆ n. If T is

a tree ofn vertices, then⌈2(n−ℓ(T)+1)
3 ⌉ ≤ γ′R(T) ≤ ⌈2(n−1)

3 ⌉ = ⌊
2n
3 ⌋ whereℓ(T) is the number

of leaves, and the equality holds if and only ifT = Pn. If n ≥ 2, thenγ′R(P2✷Pn) = ⌈4n
3 ⌉

andγ′R(P3✷Pn) = 2n. If n ≥ 1, thenγ′R(Qn) ≥ 2n+1n
3n−1 . Akbari et al. [3] gave the following

two results on planar graphs. IfG is outerplanar, thenγ′R(G) ≤ 4
5n. If G is planar and

claw-free, thenγ′R(G) ≤ 6
7n. They conjectured that the claw-freeness in the above result

can be removed.

Conjecture 2. [3] If G is a planar graph of n vertices, thenγ′R(G) ≤ 6
7n.

We address extremal problems on edge Roman domination in this paper. We disprove

Conjecture 1 in Section 2 and prove an essentially tight upper bound fork-degenerate

graphs in Section 3. More precisely, we prove thatγ′R(G) ≤ 2k
2k+1 |V(G)| for k-degenerate

graphsG, andγ′R(G) ≤ 2∆−2
2∆−1 |V(G)| + 2

2∆−1 for graphsG of maximum degree∆.

In Section 4, we prove thatγ′R(G) ≤ 4
5 |V(G)| for subcubic graphsG other thanK3,3.

This bound is attained by infinitely many graphs. Furthermore, this result not only improves

the mentioned result when∆ = 3 but also is a preparation for a result in the next section.

In Section 5, we confirm Conjecture 2 and show that the same upper bound holds for

graphs 2-cell embeddable in the plane or the projective plane. We then improve the upper

bound for graphs of girth at least five that can be drawn in surfaces of small genus. The

second result takes the advantage of the result on subcubic graphs in Section 4.

Finally, in Section 6, we prove thatγ′R(G) ≤ 4
5 |V(G)| for graphs that do not contain

a subgraph isomorphic to a subdivision ofK2,3, which generalizes a result of Akbari et

al. [3] on outerplanar graphs. Note thatC5 attains the bound45n, and the coefficient 4
5 of n

cannot be improved by excluding finitely many graphs: letG be the graph obtained from

the disjoint union ofk 5-cycles by adding a vertex adjacent to a vertex of each 5-cycle, then

γ′R(G) = 4k = 4
5 |V(G)| − 4

5. We will prove that the mentioned example is more or less the

only example for graphs that attain this coefficient ofn. More precisely, we shall prove that

the upper bound can be improved if no 5-cycle in the graph can be separated from the rest

of the graph by deleting at most one vertices.

Now we fix some notation that will be used in the rest of this paper. Let G be a

graph. For everyX ⊆ V(G), we defineN(X) to be the set of vertices ofG − X adjacent

to a vertex inX, and we defineN[X] to beN(x) ∪ X. WhenX consists of only one vertex

3



v, we denoteN(X) andN[X] by N(v) andN[v], respectively. In a graphG, for a subset

S ⊆ V(G) the subgraph induced by Sis the graphG[S] with vertex setS and edge set

{xy ∈ E(G) : x, y ∈ S}. The deletionof S from G, denoted byG − S, is the induced

subgraphG[V(G) − S]. A matching Mof G is a subset of edges ofG such that no two

edges inM are adjacent. The set of all end vertices of the edges inM is denoted byV(M).

A subset of vertices isstableif every pair of vertices in the set are non-adjacent. For every

integerk, we say thatG is k-degenerateif every subgraph ofG contains a vertex of degree

at mostk.

2 Counterexamples to Conjecture 1

This section constructs counterexamples to Conjecture 1. We first consider the com-

plete bipartite graphKr,s with partite setsX = {x1, x2, . . . , xr } andY = {y1, y2, . . . , ys}.

Theorem 3. If 1 ≤ r ≤ s, thenγ′R(Kr,s) = 2r for r < s andγ′R(Kr,s) = 2r − 1 for r = s.

Proof. For r < s, the function f defined by f (xiyi) = 2 for 1 ≤ i ≤ r and f (xiyj) = 0

for all other edgesxiyj is an edge Roman dominating function of weight 2r, which gives

γ′R(Kr,s) ≤ 2r. For r = s, a modification onf (xryr) = 1 gives thatγ′R(Kr,s) ≤ 2r − 1.

On the other hand, supposef is an edge Roman dominating function ofKr,s with the

minimum weight. Assume there area edgese with f (e) = 2. If a ≥ r, thenγ′R(Kr,s) ≥

w( f ) ≥ 2a ≥ 2r, and we are done. So we may assume thata < r. ThenX contains at

leastr − a vertices andY contains at leasts− a vertices that are not incident to any edge

e with f (e) = 2. Hence there are (r − a)(s− a) edgese′ having f (e′) = 1. These give

w( f ) ≥ 2a+ (r − a)(s− a).

If r < s, thens− a ≥ 2 and soγR(Kr,s) = w( f ) ≥ 2a + 2(r − a) = 2r. If r = s, then

2r − 1 ≥ γ′R(Kr,s) = w( f ) ≥ 2a + (r − a)2. That is, 0≥ (r − a − 1)2. This implies that

r − a− 1 = 0 andγ′R(Kr,s) = w( f ) = 2r − 1. �

Notice thatKr,r has maximum degree∆ = r andn = 2r vertices. By Theorem 3,

γ′R(Kr,r) = 2r − 1 = 2∆−1
2∆ n which is the same as the upper bound⌈ ∆

∆+1n⌉ = ⌈2r − 2+ 2
r+1⌉ =

2r − 1 in Conjecture 1. While the gap between2∆−1
2∆ n and ∆

∆+1n being ∆−1
2∆(∆+1)n, the reasons

for the above values to be the same are∆ being close ton and taking ceiling. Similar

situation happens forKr,r+1, which has maximum degree∆ = r + 1 andn = 2r + 1 vertices.

By Theorem 3,γ′R(Kr,r+1) = 2r = 2∆−2
2∆−1n which is the same as⌈ ∆

∆+1n⌉ = ⌈2r − 1+ 3
r+2⌉ = 2r.

Also, the gap between2∆−2
2∆−1n and ∆

∆+1n is ∆−2
(∆+1)(2∆−1)n.
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To get counterexamples, we modify complete bipartite graphs to obtain graphs whose

∆ are far away fromn. Consider the graphGr,t obtained fromt copies ofKr,r+1 by adding

edgesyi
r+1y

i+1
1 for 1 ≤ i ≤ t with yt+1

1 = y1
1, where the partite sets of thei-th Kr,r+1 are

Xi = {xi
1, x

i
2, . . . , x

i
r} andYi = {yi

1, y
i
2, . . . , y

i
r+1}. See Figure 1 forG2,4.
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Figure 1: The graphG2,4.

Theorem 4. If r ≥ 1 and t≥ 1, thenγ′R(Gr,t) = 2rt.

Proof. The functionf defined byf (xi
jy

i
j) = 2 for 1≤ i ≤ t and 1≤ j ≤ r, and f (e) = 0 for

all other edgese is an edge Roman dominating function of weight 2rt. Soγ′R(Gr,t) ≤ 2rt.

On the other hand, letf be an edge Roman dominating function ofGr,t with the min-

imum weight. For every 1≤ i ≤ t, let ai be the number of edgese with f (e) = 2 in the

i-th Kr,r+1, and letbi = 1 if f (yi
r+1y

i+1
1 ) = 2, andbi = 0 otherwise. We defineb0 = bt. Then

Xi has at least max{0, r − ai} vertices andYi has at least max{0, r + 1 − ai − bi − bi−1}

vertices that are not incident to any edgee with f (e) = 2. Hence there are at least

max{0, r − ai}max{0, r + 1− ai − bi − bi−1} edgese′ having f (e′) = 1. These give

w( f ) ≥
t
∑

i=1

(2ai + 2bi +max{0, r − ai}max{0, r + 1− ai − bi − bi−1}) =
t
∑

i=1

I i ,

whereI i = 2ai + bi + bi−1 + max{0, r − ai}max{0, r + 1 − ai − bi − bi−1}. It is sufficient to

prove thatI i ≥ 2r for 1 ≤ i ≤ t. Suppose to the contrary thatI i < 2r for somei. Soai < r

andr + 1− ai − bi − bi−1 ≥ 0. ThenI i = 2ai + bi + bi−1 + (r − ai)(r + 1− ai − bi − bi−1) =

2r + (r − ai − 1)(r − ai − bi − bi−1). Observe that (r − ai − 1)(r − ai − bi − bi−1) ≥ 0, since

eitherr = ai + 1 or r − ai − bi − bi−1 ≥ 0. SoI i ≥ 2r as desired. �

Notice that the graphGr,t has maximum degree∆ = r+1 andn = (2r+1)t vertices. By

Theorem 4,γ′R(Gr,t) = 2rt = 2∆−2
2∆−1n > ∆

∆+1n = ⌈ ∆
∆+1n⌉ whenr ≥ 2 andt a multiple ofr + 2.

This disproves Conjecture 1. In fact, we shall prove that2∆−2
2∆−1 is asymptotic the optimal

coefficient ofn for the upper bound of the edge Roman domination in Section 3.

3 k-degenerate graphs

Recall that a graphG is k-degenerate if for every subgraphH of G, the minimum

degreeδ(H) of H is at mostk. While the counterexamples in the previous section having
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the edge Roman domination numbers2∆−2
2∆−1n, this section shall prove that this is an upper

bound fork-degenerate graphs. It also establishes a close upper bound2∆−2
2∆−1n + 2

2∆−1 for

connected graphs.

We first need several useful lemmas that will be frequently applied in the rest of the

paper. Aremovable tripleof a graphG is a triple (S,M2,M1), whereS is a nonempty subset

of V(G) andM2 andM1 are disjoint matchings inG[S] such that every edgee ∈ E(G)−M1

incident to a vertex inS is adjacent to some edge inM2. We define theratio ρ(S,M2,M1)

of a removable triple (S,M2,M1) to be 2|M2|+|M1|

|S| .

Lemma 5. If a graph G has a removable triple(S,M2,M1) with ρ(S,M2,M1) ≤ α, then

γ′R(G) ≤ γ′R(G− S) + α|S|.

Proof. Let G′ = G − S and let f ′ be an edge Roman dominating function ofG′ with the

minimum weight. Define a functionf : E(G)→ {0, 1, 2} by setting

f (e) =







































f ′(e), if e ∈ E(G′);

2, if e ∈ M2;

1, if e ∈ M1;

0, otherwise.

Supposee is an edge withf (e) = 0. If e ∈ E(G′), thene is adjacent to an edgee′ ∈ E(G′)

with f (e′) = f ′(e′) = 2. If e < E(G′), thene is incident to some vertex inS and so by the

definition of a removable triplee is adjacent to some edgee′ ∈ M2 with f (e′) = 2. Hence,

f is an edge Roman dominating function ofG and soγ′R(G) ≤ γ′R(G′) + 2|M2| + |M1| ≤

γ′R(G − S) + α|S|. �

Lemma 6. For every removable triple(S,M2,M1) of G, if γ′R(G − S) ≤ α|V(G − S)| but

γ′R(G) > α|V(G)|, thenρ(S,M2,M1) > α

Proof. Suppose to the contrary thatρ(S,M2,M1) ≤ α for some removable triple (S,M2,M1)

of G. By Lemma 5,γ′R(G) ≤ γ′R(G−S)+α|S| ≤ α|V(G−S)|+α|S| = α|V(G)|, a contradiction

to the assumption thatγ′R(G) > α|V(G)|. �

Lemma 7. If v is a vertex of degree d in a graph G and M is a matching in G[N(v)], then

G has a removable triple(S,M2,M1) with |S| ≤ 2d + 1 and

ρ(S,M2,M1) ≤
2d − 2|M|

2d+ 1− 2|M|
≤

2d
2d + 1

.

Proof. Observe that 2d−2|M|
2d+1−2|M| decreases when|M| increases. By adding edges intoM, we

may without loss of generality assume thatM is a maximal matching inG[N(v)].
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Let X = N(v) − V(M) andY = N(X) − N[v]. Since M is a maximal matching in

G[N(v)], X is stable inG[N(v)]. We defineB = G[X∪Y] − (E(G[X]) ∪E(G[Y])) andM′ to

be a maximum matching ofB. Let X′ = X ∩ V(M′) andX′′ = X − X′; let Y′ = Y ∩ V(M′)

andY′′ = Y − Y′. Notice that there are no edges betweenX′′ andY′′, while possibly there

are edges betweenX′ andY′′ and edges betweenX′′ andY′. See Figure 2.

Let M2 = M ∪ M′ andS = N[v] ∪ V(M2). If |X′′| = 0, then (S,M2, ∅) is a removable

triple with ratio 2|M2|

|S| =
2d−2|M|

2d+1−2|M| . If |X′′| = 1, sayX′′ = {w}, then (S,M2, {vw}) is a remov-

able triple with ratio2|M2|+1
|S| =

2d−1−2|M|
2d−2|M| <

2d−2|M|
2d+1−2|M| . If |X′′| ≥ 2, then for everyw ∈ X′′,

(S,M2 ∪ {vw}, ∅) is a removable triple with ratio2|M2|+2
|S| =

2d−2|M|−2|X′′ |+2
2d−2|M|−|X′′ |+1 <

2d−2|M|
2d+1−2|M| . �

t t

M

. . . t t t

t

. . .

. . .

t

t

t. . .t
w
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Y′ Y′′
M′

t
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❜
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❜❜✧

✧
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Figure 2: The vertexw exists only whenX′′ , ∅.

Theorem 8. If G is a k-degenerate graph of n vertices, thenγ′R(G) ≤ 2k
2k+1n.

Proof. The theorem clearly holds whenn = 1. SupposeG is a minimum counterexample

to the theorem. That is,G is ak-degenerate graphG with γ′R(G) > 2k
2k+1 |V(G)|, butγ′R(H) ≤

2k
2k+1 |V(H)| for every proper subgraphH of G, which is alsok-degenerate. SinceG has a

vertex of degreed ≤ k, Lemma 7 implies the existence of a removable triple ofG with ratio

at most 2d
2d+1 ≤

2k
2k+1. It is a contradiction to Lemma 6. �

We remark that every tree is 1-degenerate, so the upper bound⌊2n
3 ⌋ for a tree ofn

vertices [2] is also a consequence of Theorem 8. In addition,the result in [2] on graphs of

maximum degree∆ is a consequence of Theorem 8, since a graph of maximum degree∆ is

∆-degenerate. The objective of the rest of this section is to improve this bound in terms of

the maximum degree for connected graphs.

Lemma 9. Let G be a graph of maximum degree∆ of n vertices. If every component of G

contains a vertex of degree less than∆, thenγ′R(G) ≤ 2∆−2
2∆−1n.

Proof. Suppose thatG is a minimum counterexample to the lemma. Since every compo-

nent ofG − S contains a vertex of degree less than∆ for everyS ⊆ V(G), by Lemma 6,

every removable triple ofG has ratio greater than2∆−2
2∆−1. However,G contains a vertex of
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degree less than∆. So by Lemma 7, there exists removable triple with ratio at most 2(∆−1)
2(∆−1)+1,

a contradiction. �

Theorem 10. If G is a connected graph of maximum degree∆ on n vertices, thenγ′R(G) ≤
2∆−2
2∆−1n+ 2

2∆−1.

Proof. According to Lemma 7,G has a removable triple (S,M2,M1) with |S| ≤ 2∆+ 1 and

ρ(S,M2,M1) ≤ 2∆
2∆+1. SinceG is connected, every component ofG−S contains a vertex of

degree less than∆. Therefore, by Lemma 9,γ′R(G − S) ≤ 2∆−2
2∆−1(n− |S|). Then, by Lemma

6, γ′R(G) ≤ 2∆−2
2∆−1(n− |S|) + 2∆

2∆+1 |S| =
2∆−2
2∆−1n+ 2

4∆2−1 |S| ≤
2∆−2
2∆−1n+ 2

2∆−1. �

The requirement for the connectivity ofG is necessary. Consider the graphtK∆,∆ of

maximum degree∆ on n = 2∆t vertices. By Theorem 3,γ′R(tK∆,∆) = (2∆ − 1)t = 2∆−1
2∆ n >

2∆−2
2∆−1n+ 2

2∆−1 whent is large.

4 Subcubic graphs

Recall that Akbari [2] showed thatγ′R(G) ≤ 6
7n for every subcubic graphG of n ver-

tices. The main theorem of this section shows thatK3,3 is the only connected graph attaining

this bound. Note that Theorem 11 is tight asγ′R(G2,t) = 4
5n for every positive integert, by

Theorem 4.

Theorem 11. If G is a subcubic graph of n vertices contains no K3,3 as a component, then

γ′R(G) ≤ 4
5n.

Proof. SupposeG is a minimum counterexample to the theorem. ThenG is connected. By

Lemma 6, every removable triple has ratio greater than4
5. By Lemma 7,G has no vertex of

degree at most two, soG is cubic.

Claim 1. G is triangle-free.

Proof. Suppose to the contrary thatG has a trianglev0v1v2. Let u0 be the third neighbor

of v0. If u0 is adjacent to bothv1 andv2, thenG is K4 and cannot be a counterexample.

Sou0 has a neighborw0 other thanv1 andv2. Then ({v0, v1, v2, u0,w0}, {v1v2, u0w0}, ∅) is a

removable triple of ratio45, a contradiction.✷

Now, choose a shortest cycleC : v0v1v2 . . . v|C|−1v0 of length|C| . 1 (mod 3). Note that

the existence of such a cycle follows from Theorem 1 in [6], which implies that every cubic

graph has a cycle of length a multiple of 3. In the following, the indices for the vertices in

C are taken modulo|C|. By Claim 1,|C| ≥ 5.

8



Claim 2. (i) If |C| ≡ 2 (mod 3), thenC has no chord. (ii) If|C| ≡ 0 (mod 3), thenC has at

most two chords. Any chord ofC is of the formvava+3b; and ifC has two chords, then they

arevava+3b andva+1va+1+3b for some integersa andb.

Proof. SupposeC has a chorde, whose end vertices divideC into two pathsQ1 andQ2.

Each pathQr together withe form a cycleDr of length shorter than|C|. By the choice of

C, each|Dr | ≡ 1 (mod 3) and so each|Qr | ≡ 0 (mod 3). This is possible only when|C| ≡ 0

(mod 3), which gives (i) and that a chord is of the formvava+3b.

SupposeC has two chordsvivi+3 j andvi′vi′+3 j′ , say 0= i < i′ ≤ |C| − 1. AsG is cubic,

these two chords are disjoint. If these two chords are non-crossing, say 0= i < i+3 j < i′ <

i′ + 3 j′ ≤ |C| − 1, thenvi , vi+3 j , vi′ , vi′+3 j′ divideC into four pathsR1,R2,R3,R4, whereC =

viR1vi+3 jR2vi′R3vi′+3 j′R4vi. SinceR1∪vivi+3 j , R2∪R4∪vivi+3 j ∪vi′vi′+3 j′ andR3∪vi′vi′+3 j′ are

cycles shorter thanC, |R1| ≡ |R2|+ |R4|+1 ≡ |R3| ≡ 0 (mod 3). But thenR2∪R3∪R4∪vivi+3 j

is a cycle shorter thanC with length 0 (mod 3), contradicting the choice ofC. If these two

chords are crossing, say 0= i < i′ < i +3 j < i′+3 j′ ≤ |C| −1, thenvi, vi′ , vi+3 j , vi′+3 j′ divide

C into four pathsS1,S2,S3,S4, whereC = viS1vi′S2vi+3 jS3vi′+3 j′S4vi. If the two chords

are not of the desired form, thenS1 ∪ vi′vi′+3 j′ ∪ S3 ∪ vivi+3 j is a cycle shorter thanC, so

|S1| + |S3| ≡ 2 (mod 3). But|S1| ≡ |S3| (mod 3), so|S1| ≡ |S3| ≡ 1 (mod 3). Similarly,

|S2| ≡ |S4| ≡ 1 (mod 3), so|C| ≡ 1 (mod 3), a contradiction.

Finally, if there are three chords for which each pair is of the formvava+3b andva+1va+1+3b,

then it is the case that|C| = 6 and the chords arev0v3, v1v4, v2v5. This implies thatG is in

fact K3,3,, violating the assumption of the theorem.✷

By Claim 2, we may assume that eitherC has no chord, or|C| ≡ 0 (mod 3) andC has

one chordv1v3a+1 or two chordsv1v3a+1, v2v3a+2. For anyvi that is not an end of a chord

of C, it has a neighborui not in C. In particular,u0, u3, . . . , u3r exist, where 3r = |C| − 3

when|C| ≡ 0 (mod 3) and 3r = |C| − 2 when|C| ≡ 2 (mod 3). In the following, whenui is

mentioned we always assume that it exists.

Claim 3. If i , j butui = u j, then min{|i − j|, |C| − |i − j|} = 2.

Proof. Verticesvi andvj divideC into two pathsR1 andR2. If min{|i − j|, |C| − |i − j|} > 2,

then for eachr = 1, 2, Rr together with the pathviuivj form a cycleDr of length shorter

than |C|. By the choice ofC, each|Dr | ≡ 1 (mod 3) and so each|Rr | ≡ 2 (mod 3). These

imply that |C| ≡ 1 (mod 3), a contradiction.✷

By Claim 3,u0, u3, . . . , u3r are distinct except possiblyu0 = u3r when|C| ≡ 2 (mod 3).

If u0 = u3r , then|C| ≡ 2 (mod 3), soC is chordless, andu0, u−3, u−6, ..., u−3r exist and are

distinct. So we may without loss of generality assume that all u0, u3, . . . , u3r are distinct.
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Let

V3 = {v0, v3, . . . , v3r} and U3 = {u0, u3, . . . , u3r}.

Claim 4. The vertex setU3 is stable.

Proof. Suppose to the contrary thatu3a is adjacent tou3b for some 0≤ 3a < 3b ≤ 3r.

Verticesv3a andv3b divide C into two pathsQ1,Q2 with |Q1| = 3b − 3a and |Q2| = |C| −

3b+ 3a. For eachr = 1, 2, pathQr together with the pathv3au3au3bv3b form a cycleDr with

|Dr | ≡ 0 or 2 (mod 3). By the choice ofC, |C| ≤ 3b−3a+3 and|C| ≤ |C|−3b+3a+3. Hence

|C| ≤ 6. Consequently,a = 0 andb = 1. If |C| = 6, then (V(C) ∪ U3, {u0u3, v1v2, v4v5}, ∅) is

a removable triple of ratio68 <
4
5, a contradiction. If|C| = 5, thenu4 exists and is distinct

from u0, u3 by Claim 1, so (V(C) ∪ U3 ∪ {u4}, {u0u3, v1v2, v4u4}, ∅) is a removable triple of

ratio 6
8 <

4
5, a contradiction.✷

Now, choose a maximal subsetU′3 of U3 such that eachu3i ∈ U′3 has a neighbor

w3i < V(C) ∪ U3 and all suchw3i ’s are distinct. LetU′′3 = U3 − U′3 andW′
3 = {w3i : u3i ∈

U′3}. If |C| ≡ 0 (mod 3), then letS = V(C) ∪ U3 ∪ W′
3, M2 = {v3i+1v3i+2 : 0 ≤ i ≤

|C|
3 − 1} ∪ {u3iw3i : u3i ∈ U′3} and M1 = {v3iu3i : u3i ∈ U′′3 }. By the maximality ofU′3,

(S,M2,M1) is a removable triple. However,ρ(S,M2,M1) =
4
3 |C|−|U

′′
3 |

5
3 |C|−|U

′′
3 |
≤ 4

5, a contradiction.

Therefore,|C| ≡ 2 (mod 3). By Claim 2,u|C|−1 exists. By Claim 3,u|C|−1 < U3. Let S′ =

V(C)∪U3∪{u3r+1}∪W′
3, M′2 = {v3i+1v3i+2 : 0 ≤ i ≤ |C|−2

3 −1}∪{v3r+1u3r+1}∪{u3iw3i : u3i ∈ U′3}

andM′1 = {v3iu3i : u3i ∈ U′′3 }. By the maximality ofU′3, (S′,M′2,M
′
1) is a removable triple.

However,ρ(S′,M′2,M
′
1) =

4
3(|C|+1)−|U′′3 |
5
3(|C|+1)−|U′′3 |

≤ 4
5, a contradiction. �

5 Graphs on surfaces of small genus

The first objective of this section is to prove Conjecture 2. Asurfaceis a 2-connected

manifold. LetG be a graph andΣ a surface. Every connected component ofΣ−G is called

a face. We say thatG is 2-cell embeddable inΣ if G can be drawn inΣ such that every face

is homeomorphic to an open disk.

Let G be a graph that is 2-cell embeddable in a surfaceΣ. We fix a 2-cell embedding

of G in Σ. We denote the set of faces of this embedding byF(G). Then for every facef

of this embedding, there exists a closed walk inG that contains all edges incident withf .

We define thedegreeof a face f to be the length of the shortest such walk. We say that a

vertex is at-vertexif the degree of this vertex ist. Similarly, we say that a face is at-faceif

the degree of this face ist.
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Theorem 12. If G is a graph of n vertices that can be 2-cell embedded in the plane or the

projective plane, thenγ′R(G) ≤ 6
7n.

Proof. The theorem is clearly true whenn = 1. Suppose thatG is a counterexample with

the minimum size of|V(G)| to the theorem. In particular,G is connected. LetΣ be a surface

in whichG can be 2-cell embedded. We fix a 2-cell embedding ofG in Σ. In addition, every

removable triple ofG has ratio greater than67 by Lemma 6. This implies that every vertex

of G has degree at least four by Lemma 7.

If there exists a 4-vertexv incident to a 3-face, thenG[N(v)] has a matchingM of

size one. By Lemma 7, there is a removable triple with ratio atmost 2×4−2×1
2×4+1−2×1 =

6
7, a

contradiction. Hence, no 4-vertex is incident to a 3-face.

If there exists a 5-vertexv incident to at least three 3-faces, thenG[N(v)] has a match-

ing M of size two. By Lemma 7, there is a removable triple with ratioat most 2×5−2×2
2×5+1−2×2 =

6
7,

a contradiction. So every 5-vertex is incident to at most two3-faces.

Now we shall derive a contradiction by means of the discharging method.

For everyx ∈ V(G)∪F(G), we define the charge ch(x) on x to be deg(x)−4. According

to Euler’s formula, the sum of the charge is

∑

v∈V(G)

(deg(v) − 4)+
∑

f∈F(G)

(deg(f ) − 4) = −4|V| + 4|E| − 4|F | < 0.

For every vertexv incident to exactlyt 3-faces witht > 0, we movedeg(v)−4
t units of

charge to each 3-face incident to it. We denote the new chargeon eachx ∈ V(G) ∪ F(G)

by ch′(x). Clearly,
∑

x∈V(G)∪F(G) ch(x) =
∑

x∈V(G)∪F(G) ch′(x).

We shall prove that ch′(x) ≥ 0 for everyx ∈ V(G) ∪ F(G). It is obviously true unless

x is a 3-face. Letf be a 3-face. Note that ch(f ) = −1, and we proved thatf is not incident

to any 4-vertex. Furthermore, as every 5-vertex is incidentto at most two 3-faces, every

5-vertex sends at least1
2 unit of charge to each 3-face incident to it. According to the

discharing rule,f receives at leastd−4
d ≥

1
3 units of charge from eachd-vertex incident to

it for d ≥ 6, and receives at least5−4
2 =

1
2 units of charge from each 5-vertex incident to it.

Therefore, ch′( f ) ≥ 0. Consequently, 0>
∑

x∈V(G)∪F(G) ch(x) =
∑

x∈V(G)∪F(G) ch′(x) ≥ 0, a

contradiction. �

The girth of a graph is the minimum length of a cycle in the graph. (The girth is

infinite if the graph has no cycle.) The other main theorem of this section is the following.

We improve the upper bound from67n to 4
5n if we additionally assume the graph has girth
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at least five. In fact, our result generalizes to surfaces of genus larger than the projective

plane.

Theorem 13. LetΣ be the plane, projective plane, torus or Klein bottle. If G isa graph of

girth at least 5 on n vertices that can be 2-cell embedded inΣ, thenγ′R(G) ≤ 4
5n.

Proof. The theorem holds forn = 1. Suppose thatG is a counterexample with the minimum

size of|V(G)| to the theorem. In particular,G is connected. LetΣ be a surface of minimum

genus in whichG can be 2-cell embedded. We fix a 2-cell embedding ofG in Σ. By Lemma

6, every removable triple ofG has ratio greater than45. So every vertex ofG has degree at

least three by Lemma 7.

Since the girth ofG is at least five, every 5-face is surrounded by a cycle of length

five. We claim that every 5-facef = (v0, v1, v2, v3, v4) is incident to at most two 3-vertices.

Suppose to the contrary thatf is incident to at least three 3-vertices. So two 3-vertices

incident with f , sayv0 andv2, are non-adjacent. Letui ∈ N(vi) − {vj : 0 ≤ j ≤ 4} for 0 ≤

i ≤ 2. SinceG has no 3-cycles and no 4-cycles,u0, u1, u2, v0, v1, v2, v3, v4 are eight distinct

vertices. Sinceu0 andu2 has degree at least three andG has no 3-cycles and no 4-cycles,

we may choosew0 andw2 such thatwi ∈ N(ui) − {vj : 0 ≤ j ≤ 4} for i = 0, 2 andw0 , w2.

See Figure 3. LetS = {v0, v1, v2, v3, v4, u0, u1, u2,w0,w2} andM2 = {u0w0, v1u1, u2w2, v3v4}.

Then (S,M2, ∅) is a removable triple of ratio810 =
4
5, a contradiction. This proves the claim.

t

u0

t

w0

t

v0

t

v4

t

v1

t

u1

t

v2

t

v3

t

u2

t

w2

Figure 3: A 5-face incident to at least three 3-vertices.

For everyx ∈ V(G) ∪ F(G), define the charge ch(x) on x to be deg(x) − 4. According

to Euler’s formula, the sum of the charges is

∑

v∈V(G)

(deg(v) − 4)+
∑

f∈F(G)

(deg(f ) − 4) = −4|V| + 4|E| − 4|F | ≤ 0.

Now we describing the discharging rule. We shall move charges of faces to vertices

incident to it. But we should notice that some face is not surrounded by a cycle. For every

face f , let Wf be a shortest closed walk containing all edges incident withf , and letW′
f

be the walk obtained fromWf by deleting the last vertex and the last edge. For every

vertexv incident to f , definet f ,v to be the number such thatv appearst f ,v times inW′
f . The

discharging rule is that for every facef incident to some 3-vertex, movedeg(f )−4
∑

t f ,u
t f ,v units of
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charge to each 3-vertexv incident to f , where the summation in the denominator is over all

3-verticesu incident to f . We denote the number of the units of new charges ofx by ch′(x).

We shall prove that ch′(x) ≥ 0 for everyx ∈ V(G) ∪ F(G). Observe that it is sufficient

to prove this for 3-vertices. For every 3-vertexv, ch(v) = −1, andv is incident to three

faces of degree at least 5 by the assumption. The vertexv receives at leastd−4
d t f ,v ≥

1
3t f ,v

units of charge from ad-face incident to it ford ≥ 6, and receives at least5−4
2 t f ,v =

1
2t f ,v

units of charge from each 5-face incident to it by the previous claim. Then ch′(v) ≥ 0 for

every 3-vertexv, since
∑

f∈F(G) t f ,v = 3.

Since 0≥
∑

x∈V(G)∪F(G) ch(x) =
∑

x∈V(G)∪F(G) ch′(x) ≥ 0, we know that ch′(x) = 0 for

every x ∈ V(G) ∪ F(G). By Theorem 11, there exists a vertexv of degree at least four.

But ch′(v) > deg(v) − 4 ≥ 0 asG has girth at least five. So 0≥
∑

x∈V(G)∪F(G) ch′(x) > 0, a

contradiction. This proves thatγ′R(G) ≤ 4
5n. �

Based on Theorems 12 and 13, we expect the following conjecture holds. Note that

the upper bound in the following tends to2
3 whenk tends to infinity. It is an evidence that

supports the conjecture, since the behavior of a planar graph with large girth is like a tree.

Conjecture 14. If G is a planar graph of girth at least3k + 2 on n vertices, thenγ′R(G) ≤
2k+2
3k+2n.

6 Graphs without K2,3-subdivisions

A graph isouterplanarif it can be embedded in the plane such that every vertex is

incident to the infinite face. Akbari et al. [3] showed thatγ′R(G) ≤ 4
5n for every outerplanar

graph ofn vertices. In this section, we generalize the theorem to graphs withoutK2,3-

subdivisions, which is a proper superclass of outerplanar graphs. Recall thatC5 attains the

bound4
5n, and the coefficient 4

5 of n cannot be improved by excluding finitely many graphs.

We shall prove that the upper bound can be improved if no 5-cycle in the graph can be

separated from the rest of the graph by deleting at most one vertices.

A subdivisionof a graphH is a graph that can be obtained fromH by repeatedly

deleting an edgexy and adding a new vertexz adjacent tox, y. The following lemma is an

immediate consequence of Kuratowski’s theorem [8].

Lemma 15. A graph G is an outerplanar graph if and only if G does not contain a subgraph

isomorphic to a subdivision of K4 or K2,3.
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Let G be an outerplanar graph. We fix an embedding ofG in the plane such that every

vertex is incident to the infinite face. We define theinternal dual graphD(G) of G to

be the multigraph such thatV(D(G)) is the set of faces ofG except the infinite face, and

E(D(G)) = {uve: u, v ∈ F(G), e ∈ E(G), e is incident tou andv}. Note thatD(G) might not

be simple by the definition. But the following lemma shows that D(G) is simple and is a

tree, whenG is 2-connected.

Lemma 16. If G is a 2-connected outerplanar graph that is embedded in the plane such

that every vertex is incident to the infinite face, then D(G) is a tree.

Proof. SinceG is 2-connected,D(G) has no loops. Suppose to the contrary that there is a

cyclev1v2 · · · vnv1 in D(G), wheren ≥ 2. Then there is a vertexu of G inside the cycle, but

u is not incident to the infinite face, a contradiction. �

A cut-vertexin a graph is a vertex such that deleting this vertex from the graph results

in at least two components. Ablock B in a graphG is a maximal subgraph ofG of order

at least two such thatB has no cut-vertex. It is well-known that every graph has a block

containing at most one cut-vertex. And we call such a block anend-block.

Theorem 17. Let G be a graph of n vertices that does not contain a subgraph isomorphic

to a subdivision of K2,3. If G does not contain C5 as a component and there does not exist

a vertex v such that G− v contains C5 as a component, thenγ′R(G) ≤ 3
4n.

Proof. The theorem is true whenn ≤ 4. We suppose thatG is a counterexample with the

minimum size of|V(G)|. SoG is connected and contains at least five vertices.

We say that a triple (S,M2,M1) is usefulif it is a removable triple with ratio at most3
4

such thatG[S] is connected andG− S does not containsC5 as a component.

Claim 1. There does not exist a useful triple.

Proof. Suppose that (S,M2,M1) is a useful triple such that|S| is as large as possible. AsG

is a minimum counterexample, there exists a vertexv such thatG− (S∪ {v}) containsC5 as

a component. LetC be the set of components ofG− (S∪{v}) isomorphic toC5. SinceG−v

does not containC5 as a component, there exists an edge betweenS and each member ofC

in G. As S is connected, we have that|C| ≤ 2, otherwiseG contains a subgraph isomorphic

to a subdivision ofK2,3, a contradiction. LetS′ = {v} ∪
⋃

C∈C V(C). Clearly, there exists

M′2 ⊆ E(G[S′]) such that (S′,M′2, ∅) is a removable triple ofG − S with ratio at most34.

Observe thatG − (S ∪ S′) does not containC5 as a component. So (S ∪ S′,M2 ∪ M′2,M1)

is a useful triple with|S ∪ S′| > |S|, a contradiction.✷
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Claim 2. For everyS ⊆ V(G) such thatG[S] is connected andG−S contains a component

C isomorphic toC5, we have that|N(S) ∩ V(C)| ≤ 2 and|N(V(C)) ∩ S| ≥ 2.

Proof.First |N(S)∩V(C)| ≤ 2, otherwiseG contains a subgraph isomorphic to a subdivision

of K2,3, a contradiction. Also|N(V(C)) ∩ S| ≥ 2, otherwise, eitherG containsC5 as a

component, orG contains a vertex such that deleting this vertex results in acomponent

isomorphic toC5. ✷

Claim 3. For everyS ⊆ V(G) such thatG[S] is connected and|N(V(G)−S)| ≤ 2, there are

at most two components ofG− S isomorphic toC5.

Proof. By Claim 2, there exist two verticesx, y ∈ S such that bothx, y have neighbors in

each component ofG−S isomorphic toC5. SinceG does not contain a subgraph isomorphic

to a subdivision ofK2,3, there are at most two components ofG− S isomorphic toC5. ✷

Claim 4. No end-block ofG is isomorphic toC5.

Proof. Suppose thatB is an end-block ofG isomorphic toC5. Let v be the vertex inB

adjacent to a vertex not inB. Let u ∈ N(v) − V(B) and letS = V(B) ∪ {u}. Let C be the

set of components ofG − S isomorphic toC5. By Claim 3, |C| ≤ 2. For every memberC

in C, let MC be a maximal matching inC. Then (S ∪
⋃

C∈C V(C), {uv} ∪
⋃

C∈C MC, ∅) is a

removable triple with ratio4(|C|+1)
5|C|+6 ≤

3
4, since|C| ≤ 2. So this removable triple is useful, a

contradiction.✷

Claim 5. No removable triple (S,M2,M1) of G with ratio at most34 such thatG[S] is

connected and|N(V(G) − S)| ≤ 1.

Proof. If there exists a removable triple (S,M2,M1) of G with ratio at most34 such thatG[S]

is connected, and|N(V(G) − S)| ≤ 1, then (S,M2,M1) is useful by Claim 4, contradicting

Claim 1.✷

Claim 6. G is not a cycle and no end-block ofG is a cycle.

Proof. Clearly,G is not a cycle. Suppose that some end-blockB of G is a cycle. By Claim

5, |V(B)| , 5. Then it is easy to see that there exist two matchingsM1,M2 of B such that

M2 contains an edge incident with the vertex inN(V(G) − V(B)) and (V(B),M2,M1) has

ratio at most34, contradicting Claim 5.✷

Claim 7. Every vertex ofG has degree at least two.

Proof. Let v be a vertex of degree one, and letu be the neighbor ofv. SinceG contains

at least four vertices,u has a neighborw other thanv. We assume thatw is chosen to

minimize the number of components ofG− {u, v,w} isomorphic toC5. If G− {u, v,w} does

not containC5 as a component, then ({u, v,w}, {u,w}, ∅) is an useful triple. SoG − {u, v,w}
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containsC5 as a component. Note that for each componentC of G− {u, v,w} isomorphic to

C5, N(C) = {u,w}, by Claim 2. As we choosew to minimize the number of components of

G−{u, v,w} isomorphic toC5, there exists only one componentC of G−{u, v,w} isomorphic

to C5 by Claim 3. Hence, ({u, v,w} ∪ V(C), {uw} ∪ M2, ∅) is a useful triple, whereM2 is a

maximal matching inC. ✷

Claim 8. No end block ofG is isomorphic toK4.

Proof. Suppose that there exists an end-blockB of G isomorphic toK4. Since|V(G)| ≥ 5,

B , G. Let v be the vertex inN(V(G) − V(B)). And let e be an edge ofB incident withv

ande′ the edge ofB not adjacent toe. Then (V(B), {e}, {e′}) is a removable triple with ratio
3
4, contradicting Claim 5.✷

Claim 9. Every end-block ofG is outerplanar but not an edge.

Proof. Let B be an end-block ofG. By Claim 7,B is not an edge. Suppose thatB is not

outerplanar. By Lemma 15,B contains a subgraph isomorphic to a subdivision ofK4. Let

H be a subgraph ofB isomorphic to a subdivision ofK4. If |V(H)| ≥ 5, thenH contains a

subgraph isomorphic to a subdivision ofK2,3, a contradiction. So|V(H)| = 4 andH = K4.

But by Claim 8,B , K4, so there existsv ∈ V(B)−V(H). SinceB is 2-connected, there exist

two paths inB from v to V(H) only intersecting inv. However, it implies thatB contains a

subgraph isomorphic to a subdivision ofK2,3, a contradiction.✷

Claim 10. There does not exist a path of four vertices inG such that every vertex is of

degree two inG.

Proof.Let P = v1v2v3v4 be a path of four vertices inG such that every vertex inP has degree

two in G. Let v ∈ N(v1) − V(P). Note thatv4 is not adjacent tov, otherwise,G contains

an end-block ofG isomorphic to the 5-cycle, contradicting Claim 4. LetG′ be the graph

obtained fromG−{v1, v2, v3} by adding the edgevv4. It is easy to see thatγ′R(G) ≤ 3
4 |V(G)| if

γ′R(G′) ≤ 3
4 |V(G′)|. AsG is a minimum counterexample andG′ is connected, eitherG′ = C5

or there exists a vertexw in G′ such thatG−w contains a component isomorphic toC5. For

the former,G is the 8-cycle; for the latter,C8 is an end-block ofG. Both cases contradict

Claim 6.✷

Let B be an end-block ofG. By Claim 9, B is outerplanar but not an edge. We fix

an embedding ofB such that all vertices are incident with the infinite face. Let T be the

internal dual ofB. By Claim 6,T contains at least two vertices. For everyt ∈ V(T), let ft
be the face ofB corresponding tot. If G , B, let the root ofT be a vertext such thatft
contains the vertex inN(V(G) − V(B)); otherwise, let the root ofT be an arbitrary vertex.

Claim 11. For every non-root leaft of T, the boundary offt is a 5-cycle.
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Proof. Let S be the boundary cycle offt. By Claim 10, |V(S)| ≤ 5. Suppose thatS is

a 3-cycle or a 4-cycle. LetC be the set of components ofG − V(S) isomorphic toC5.

|C| ≥ 1, otherwise there exists an useful triple (V(S),M2,M1) for someM2 and M1. By

Claim 3, |C| ≤ 1. LetC be the member ofC. Note that there does not exist a component

B of G − (V(S) ∪ V(C)) such that|N(C′) ∩ (V(S) ∪ V(C))| ≥ 2, otherwiseB contains a

subgraph isormorphic to a subdivision ofK2,3. As B is 2-connected,B = G[V(S) ∪ V(C)].

But (V(B),M′2,M
′
1) is a removable triple with ratio at most3

4 such thatB is connected and

|N(V(G) − V(B))| ≤ 1. It is a contradiction to Claim 5.✷

Let s be a leaf ofT that is as far as from the root ofT as possible, and letp be the

neighbor ofs in T. Let S be the subset ofV(G) such thatG[S] is the union of the boundary

of fp and the boundary offc for each childc of p. Note that eachc is a leaf by our choice

of p. Also, |V( fp ∩ fc)| = 2 for every childc of p. Let Q be the boundary cycle offp.

Clearly,G[S] is connected. Suppose that there exists a componentC of G−S isomor-

phic toC5. ThenN(C) ⊆ S. SinceB is 2-connected,|N(C)| ≥ 2. By Claim 2,|N(C)| = 2.

Sincec is a leaf for every childc of p, N(C) ⊆ V( fp). Note thatC bounds a face that corre-

sponds to a leaf ofT. Also, C does not contain the vertex inN(V(G) − V(B)). So the leaf

of T corresponds toC is farther thans from the root ofT, a contradiction. SoG − S does

not containC5 as a component. Note thatN(V(G) − S) ⊆ V(Q). Sinces is the leaf ofT

farthest from the root,|N(V(G) −S)| ≤ 2. SinceG does not contain a subgraph isomorphic

to a subdivision ofK2,3, if |N(V(G) − S)| ≤ 2, then there two vertices are adjacent. LetM

be a maximal matching of the minimum size such thatM contains an edge incident with all

vertices inN(V(G) − S). If |V(Q)| . 1 (mod 3), then letM2 = M andM1 = ∅; otherwise,

pick an edgee in M not incident with a vertex inN(V(G) − S)), and letM1 = {e} and

M2 = M − M1. For every childc of p, there exists an edgeec not incident with any vertex

of Q such thatG[S]− (M∪
⋃

c ec) has no edges, where the union runs through all childrenc

of p. Let M∗ =
⋃

c ec, where the union runs through all childrenc of p. If |V(Q)| ≡ 0 (mod

3), then the ratio of (S,M2 ∪ M∗,M1) = 2
3 . If |V(Q)| ≡ 2 (mod 3), then|S| ≥ |Q| + 3 ≥ 8,

so the ratio of (M,M2 ∪ M∗,M1) is
2
3 |V(Q)|+ 2

3+2|M∗ |
|V(Q)|+3|M∗ | ≤

3
4. By Claim 1,|V(Q)| ≡ 1 (mod 3).

Note that 2|M2|+|M1|

|S| =
2
3 |V(Q)|+2|M∗ |+1
|V(Q)|+3|M∗ | =

2
3 +

1
3(|V(Q)|+3|M∗ |) ≤

3
4 since |V(Q)| ≥ 4. So if

we can choose the edge inM1 such that this edge is not incident with the boundary offc
for some childc of p, then (S,M2 ∪ M∗,M1) is a removable triple and hence is useful.

Therefore,|M∗| ≥ |V(Q)|−1
3 . On the other hand, (S,M2 ∪ M∗, ∅) is a removable triple with

ratio 2
3 +

4
3(|V(Q)|+3|M∗ |) , so 16> |V(Q)| + 3|M∗| ≥ 2|V(Q)| − 1. Hence,|V(Q)| = 4 or 7.

Similarly, if S = V(G), then|M∗| ≥ |V(Q)|+2
3 , so |V(Q)| = 4 and 2≤ |M∗| ≤ 3, but it is easy

to check thatγ′R(G) ≤ 3
4n in this case. Consequently,S , V(G), and either|V(Q)| = 4 and
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1 ≤ |M∗| ≤ 3, or |V(Q)| = 7 and|M∗| = 2.

DenoteQ1 by v1v2 . . . v|V(Q)|v1. Without loss of generality, we may assume that{v1} ⊆

N(V(G) − S) ⊆ {v1, v2}. Let w be a vertex inN(V(G) − S) ∩ N(v1) such thatG− (S ∪ {w})

has as less components isomorphic toC5 as possible. LetS′ = S ∪ {w} and letN =

{v3i+2v3i+3 : 0 ≤ i ≤ |V(Q)|−1
3 − 1}. For every childc of p, there exists an edgee′c such that

G[S′] − (N∪ {v1w} ∪
⋃

c e′c) has no edges, where the union runs through all childrenc of p.

Note that (S′,N∪{v1w}∪
⋃

c e′c, ∅) is a removable triple with ratio at most3
4, where the union

runs through all childrenc of p, since|M∗| ≥ |V(Q)|−1
3 . Therefore,G − (S ∪ {w}) contains a

component isomorphic toC5. Note thatw ∈ N(C) for every componentC of G− (S ∪ {w})

isomorphic toC5. If there exists a componentC of G− (S∪ {w}) isomorphic toC5 satisfies

thatN(C) ⊆ {w, v1}, then there existsw′ ∈ N(V(G) − S) ∩ N(v1) such thatG − (S ∪ {w′})

has no component isomorphic toC5, contradicting the choice ofw. So every component

C of G − (S ∪ {w}) isomorphic toC5 satisfies thatN(C) = {w, v2} by Claim 2. But in this

case, there is at most one such component, otherwiseG contains a subgraph isomorphic to

a subdivision ofK2,3. Then there existsw′′ ∈ V(C)∩N(v2)−S such thatG− (S∪ {w′′}) has

no components isomorphic toC5. DefineN′ = {v1v|V(Q)|, v3i+1v3i+2 : 1 ≤ i ≤ |V(Q)|−1
3 − 1}.

For every childc of p, there exists an edgee′′c such thatG[S′] − (N′ ∪ {v2w′′} ∪
⋃

c e′′c ) has

no edges, where the union runs through all childrenc of p. Then (S ∪ {w′′},N′ ∪ {v2w′′} ∪
⋃

c e′′c , ∅) is a useful triple, where the union runs through all children c of p, a contradiction.

This proves the theorem. �

Theorem 18. γ′R(G) ≤ 4
5n for every graph G on n vertices containing no subgraph isomor-

phic to a subdivision of K2,3.

Proof. Suppose thatG is a counterexample with the minimum size of|V(G)| of this theo-

rem. By Theorem 17, eitherG containsC5 as a component, or there existsv such thatG−v

containsC5 as a component. For the former, letC be a component ofG isomorphic toC5,

then (V(C),M2, ∅) is a removable triple ofG with ratio 4
5, whereM2 is a maximal matching

of C5. For the latter, letC′ be the component ofG − v isomorphic toC5, then lete be an

edge ofG with endv and a vertexv′ of C′, and letM′2 be the maximal matching ofC′ − v′

of size one, then (V(C′)∪ {v},M′2∪ {e
′}, ∅) is a removable triple ofG with ratio less than45.

Either case contradict Lemma 6. This proves the theorem. �
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