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Abstract

In this paper, we present new upper bounds for the global domination and Roman domi-
nation numbers and also prove that these results are asymptotically best possible. Moreover,
we give upper bounds for the restrained domination and total restrained domination numbers
for large classes of graphs, and show that, for almost all graphs, the restrained domination
number is equal to the domination number, and the total restrained domination number is
equal to the total domination number. A number of open problems are posed.

Keywords: graphs, Roman domination number, global domination number, restrained domination

number.

1 Introduction

All graphs will be finite and undirected without loops and multiple edges. If G is a graph of order
n, then V (G) = {v1, v2, ..., vn} is the set of vertices in G. Let N(x) denote the neighbourhood of
a vertex x. Also let N(X) = ∪x∈XN(x) and N [X] = N(X)∪X. Denote by δ(G) and ∆(G) the
minimum and maximum degrees of vertices of G, respectively. Put δ = δ(G) and ∆ = ∆(G).

A set X is called a dominating set if every vertex not in X is adjacent to a vertex in X.
The minimum cardinality of a dominating set of G is called the domination number γ(G). The
following fundamental result for the domination number was proved by many authors [1, 3, 9, 12]:

Theorem 1 ([1, 3, 9, 12]) For any graph G,

γ(G) ≤
ln(δ + 1) + 1

δ + 1
n.

Let H be a k-uniform hypergraph with n vertices and m edges. The transversal number
τ(H) of H is the minimum cardinality of a set of vertices that intersects all edges of H. Alon
[2] proved a fundamental result that if k > 1, then

τ(H) ≤
ln k

k
(n+m).
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He also showed that this bound is asymptotically best possible, i.e. there exist k-uniform
hypergraphs H such that for sufficiently large k,

τ(H) =
ln k

k
(n+m)(1 + o(1)).

Alon [2] gives an interesting probabilistic construction of such a hypergraph H. In fact, H is a
random k-uniform hypergraph on [k ln k] vertices with k edges constructed by choosing each edge
randomly and independently according to a uniform distribution on k-subsets of the vertex set.
This construction implies that the above bound for the domination number is asymptotically
best possible:

Theorem 2 ([2]) When n is large there exists a graph G such that

γ(G) ≥
ln(δ + 1) + 1

δ + 1
n(1 + o(1)).

The concept of global domination was introduced by Brigham and Dutton [5] and also by
Sampathkumar [15]. It is a variant of the domination number. A set X is called a global
dominating set if X is a dominating set in both G and its complement G. The minimum
cardinality of a global dominating set of G is called the global domination number γg(G). There
are a number of bounds on the global domination number γg(G). Brigham and Dutton in [5]
give the following bounds on the global domination number in terms of order, minimum and
maximum degrees, and the domination number of G:

Theorem 3 ([5]) If either G or G is disconnected, then

γg(G) = max{γ(G), γ(G)}.

Theorem 4 ([5]) For any graph G, either

γg(G) = max{γ(G), γ(G)} or γg(G) ≤ min{∆(G),∆(G)}+ 1.

Theorem 5 ([5]) For any graph G, if δ(G) = δ(G) ≤ 2, then

γg(G) ≤ δ(G) + 2;

otherwise
γg(G) ≤ max{δ(G), δ(G)}+ 1.

Another variant of the domination number, the Roman domination number, was introduced
by Stewart [16]. In [16] and [14], a Roman dominating function (RDF) of a graph G is defined as
a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0
is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF is defined as the
value f(V (G)) =

∑

v∈V (G) f(v). The Roman domination number of a graph G, denoted γR(G),
is equal to the minimum weight of an RDF on G. In fact, Roman domination is of both historical
and mathematical interest. Emperor Constantine had the requirement that an army or legion
could be sent from its home to defend a neighbouring location only if there was a second army
which would stay and protect the home. Thus, there were two types of armies: stationary and
travelling. Each vertex with no army must have a neighbouring vertex with a travelling army.
Stationary armies then dominate their own vertices, and a vertex with two armies is dominated
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by its stationary army, and its open neighbourhood is dominated by the travelling army. Thus,
the definition of Roman domination has its historical background and it can be used for the
problems of this type, which arise in military and commercial decision making. The following
results about the Roman domination number are known:

Theorem 6 ([6]) For any graph G,

γ(G) ≤ γR(G) ≤ 2γ(G).

Theorem 7 ([6]) For any graph G of order n and maximum degree ∆,

γR(G) ≥
2n

∆+ 1
.

Telle and Proskurowski [17] introduced restrained domination as a vertex partitioning prob-
lem. A dominating set X of a graph G is called a restrained dominating set if every vertex in
V (G)−X is adjacent to a vertex in V (G)−X. If, in addition, every vertex of X is adjacent to
a vertex of X, then X is called a total restrained dominating set. The minimum cardinality of
a restrained dominating set of G is the restrained domination number γr(G), and the minimum
cardinality of a total restrained dominating set of G is the total restrained domination number
γtr(G). For these parameters, the following upper bounds have been found:

Theorem 8 ([7]) If δ(G) ≥ 2, then

γr(G) ≤ n−∆.

Theorem 9 ([8]) If G is a connected graph with n ≥ 4, δ ≥ 2 and ∆ ≤ n− 2, then

γtr(G) ≤ n−
∆

2
− 1.

In this paper, we present new upper bounds for the global and roman domination numbers,
and show that our results are asymptotically best possible. Moreover, we give upper bounds for
the restrained domination and total restrained domination numbers for large classes of graphs.
A number of open problems are posed.

2 Upper Bounds for the Global Domination Number

The following theorem provides an upper bound for the global domination number. In what
follows, we denote δ̄ = δ(G) and

δ′ = min{δ, δ̄}.

Theorem 10 For any graph G with δ′ > 0,

γg(G) ≤

(

1−
δ′

21/δ′ (1 + δ′)1+1/δ′

)

n.

Proof: Let A be a set formed by an independent choice of vertices of G, where each vertex is
selected with the probability

p = 1−
1

21/δ′ (1 + δ′)1/δ′
.
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Let us denote B = V (G)−N [A] and C = {vi ∈ V (G), vi is not dominated byA inG}. It is easy
to show that

P[vi ∈ B] = (1− p)1+deg(vi) ≤ (1− p)1+δ

P[vi ∈ C] = (1− p)1+(n−deg(vi)−1) ≤ (1− p)1+δ̄.

It is obvious that the set D = A ∪B ∪C is a global dominating set. The expectation of |D| is

E[|D|] ≤ E[|A|] +E[|B|] +E[|C|]

= pn+
n
∑

i=1

P[vi ∈ B] +
n
∑

i=1

P[vi ∈ C]

≤ pn+ (1− p)1+δn+ (1 − p)1+δ̄n

≤ pn+ 2(1− p)1+min{δ,δ̄}n

= pn+ 2(1− p)1+δ′n

=

(

1−
δ′

21/δ′ (1 + δ′)1+1/δ′

)

n, (1)

as required. The proof of the theorem is complete.

The proof of Theorem 10 implies the following upper bound, which is asymptotically same
as the bound of Theorem 10.

Corollary 1 For any graph G,

γg(G) ≤
ln(δ′ + 1) + ln 2 + 1

δ′ + 1
n.

Proof: Using the inequality 1 − p ≤ e−p, we obtain the following estimation of the expression
(1):

E[|D|] ≤ pn+ 2e−p(δ′+1)n.

If we put p = min{1, ln(δ′+1)+ln 2
δ′+1 }, then

E[|D|] ≤
ln(δ′ + 1) + ln 2 + 1

δ′ + 1
n,

as required.

We now prove that the upper bound of Corollary 1, and therefore of Theorem 10, is asymp-
totically best possible.

Theorem 11 When n is large there exists a graph G such that

γg(G) ≥
ln(δ′ + 1) + ln 2 + 1

δ′ + 1
n(1 + o(1)).

Proof: Let us modify Alon’s probabilistic construction described in the introduction as follows.
Let F be a complete graph K[δ ln δ], and let us denote F = V (F ). Next, we add a set of new
vertices V = {v1, ..., vδ}, where each vertex vi is adjacent to δ vertices that are randomly chosen
from the set F . Let us add a new component Kδ+1 and denote the resulting graph by G, which
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has n = [δ ln δ] + 2δ + 1 vertices. Note that δ′ = δ because δ̄ > δ. We will prove that with high
probability

γg(G) ≥
ln δ′

δ′
n(1 + oδ′(1)) =

ln δ

δ
n(1 + oδ(1)) = ln2 δ(1 + oδ(1)).

Let us denote by H the graph G without the component Kδ+1. It is obvious that

γg(G) = γ(H) + 1.

Therefore, the result will follow if we can prove that with high probability

γ(H) > ln2 δ(1 + oδ(1)).

Without loss of generality we may only consider dominating sets in H that are subsets of F .
Let us consider a dominating set X in H such that X ⊆ F and |X| ≤ ln2 δ − ln δ ln ln5 δ. It is
easy to show that the probability of the set X not dominating a vertex vi ∈ V is

P[X does not dominate vi] =

(

|F | − |X|
δ

)

(

|F |
δ

) ≥

(

|F | − |X| − δ

|F | − δ

)δ

=

(

1−
|X|

|F | − δ

)δ

.

Using the inequality 1− x ≥ e−x(1− x2) if x < 1, we obtain the following estimation:

P[X does not dominate vi] ≥ e−
ln

2 δ−ln δ ln ln
5 δ

δ ln δ−δ
δ



1−

(

ln2 δ − ln δ ln ln5 δ

δ ln δ − δ

)2




δ

= e
− ln δ+ln ln

5 δ
1−1/ ln δ (1 + oδ(1))

= eln ( ln
5 δ
δ

)(1+oδ(1)) (1 + oδ(1))

=

(

ln5 δ

δ

)1+oδ(1)

(1 + oδ(1))

≥
ln4 δ

δ
.

Thus, we conclude that

P [X dominates V ] ≤

(

1−
ln4 δ

δ

)δ

≤ e− ln4 δ.

It is obvious that the number of choices for the set X is less than
∑ln2 δ

i=0

(

|F |
i

)

. We have

ln2 δ
∑

i=0

(

|F |
i

)

< ln2 δ

(

δ ln δ
ln2 δ

)

< (δ ln δ)ln
2 δ < e2 ln

3 δ.

Now we can estimate the probability that the domination number of the graph H is less than
or equal to ln2 δ − ln δ ln ln5 δ:

P
[

γ(H) ≤ ln2 δ − ln δ ln ln5 δ
]

<
ln2 δ
∑

i=0

(

|F |
i

)

P [X dominates V ] < e2 ln
3 δ−ln4 δ = oδ(1).

Therefore, with high probability γ(H) > ln2 δ − ln δ ln ln5 δ = ln2 δ(1 + oδ(1)), as required. The
proof of the theorem is complete.

5



3 Upper Bounds for the Roman Domination Number

The following theorem provides an upper bound for the Roman domination number:

Theorem 12 For any graph G with δ > 0,

γR(G) ≤ 2

(

1−
21/δδ

(1 + δ)1+1/δ

)

n.

Proof: Let A be a set formed by an independent choice of vertices of G, where each vertex is
selected with the probability

p = 1−

(

2

1 + δ

)1/δ

.

We denote B = N [A]−A and C = V (G)−N [A]. Let us assume that f is a function f : V (G) →
{0, 1, 2} and assign f(vi) = 2 for each vi ∈ A, f(vi) = 0 for each vi ∈ B and f(vi) = 1 for each
vi ∈ C. It is obvious that f is a Roman dominating function and f(V (G)) = 2|A| + |C|.

It is easy to show that

P[vi ∈ C] = (1− p)1+deg(vi) ≤ (1− p)1+δ.

The expectation of f(V (G)) is

E[f(V (G))] ≤ 2E[|A|] +E[|C|]

= 2pn+
n
∑

i=1

P[vi ∈ C]

≤ 2pn+ (1− p)1+δn

= 2

(

1−
δ 21/δ

(1 + δ)1+1/δ

)

n. (2)

Since the expectation is an average value, there exists a particular Roman dominating function
of the above order, as required. The proof of the theorem is complete.

Theorem 12 implies the following upper bound.

Corollary 2 For any graph G with δ > 0,

γR(G) ≤
2 ln(δ + 1)− ln 4 + 2

δ + 1
n.

Proof: Using the inequality 1 − p ≤ e−p, we obtain the following estimation of the expression
(2):

E[f(V (G))] ≤ 2pn+ e−p(δ+1)n.

If we put p = ln(δ+1)−ln 2
δ+1 , then

E[f(V (G))] ≤
2 ln(δ + 1)− ln 4 + 2

δ + 1
n,

as required.

Note that the result of Corollary 2 was also proved in [6], even though the upper bound in [6]
contains a misprint.

Now let us prove that the upper bound of Corollary 2, and therefore of Theorem 12, is
asymptotically best possible.
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Theorem 13 When n is large there exists a graph G such that

γR(G) ≥
2 ln(δ + 1)− ln 4 + 2

δ + 1
n(1 + o(1)).

Proof: Let F be a complete graph K[δ ln δ], and let us denote F = V (F ). Next, we add a set of
new vertices V = {v1, ..., vδ}, where each vertex vi is adjacent to δ vertices that are randomly
chosen from the set F . The resulting graph is denoted by G and it has n = [δ ln δ] + δ vertices.
We will prove that with positive probability

γR(G) ≥
2 ln δ

δ
n(1 + oδ(1)) = 2 ln2 δ(1 + oδ(1)).

Let f = (D0,D1,D2) be a γR-function ofG, i.e.f is a Roman dominating function and f(V (G)) =
γR(G). It is easy to see that we may assume that D2 ⊆ F and D1 ⊆ V .

Let us consider two cases. If |D2| > ln2 δ− ln δ ln ln4 δ, then f(V (G)) > 2 ln2 δ(1 + oδ(1)), as
required. If |D2| ≤ ln2 δ − ln δ ln ln4 δ, then, similar to the proof of Theorem 11, we can prove
that the probability of the set D2 dominating a vertex vi ∈ V is

P[D2 dominates vi] ≤ 1−
ln3 δ

δ
.

Let us consider the random variable |N(D2) ∩ V |. The expectation of |N(D2) ∩ V | is

E[|N(D2) ∩ V |] =
δ
∑

i=1

P[D2 dominates vi] ≤ δ − ln3 δ.

Thus we can conclude that there exists a graph G, for which |D1| ≥ ln3 δ, i.e. f(V (G)) ≥ ln3 δ >
2 ln2 δ(1 + oδ(1)), as required.

4 Restrained and Total Restrained Domination

Theorem 1 implies that when δ(G) is large, γ(G)/n is close to 0 for any graph G. Similar results
were proved for the global and Roman domination numbers in the previous sections. However,
for the total restrained domination numbers this is not the case, because for any δ there exists
(see [8]) an infinite family of graphs G with minimum degree δ, for which γtr(G)/n → 1 when n
tends to ∞. The above is also true for the restrained domination number. Thus, for the class of
all graphs, it is impossible to provide an upper bound for these parameters similar to the result
of Theorem 1. In this section, we will give such upper bounds for large classes of graphs.

Let us first find the restrained domination number of a ‘typical’ graph. Let 0 < p < 1 be
fixed and put q = 1 − p. Denote by G(n,P[edge] = p) the discrete probability space consisting
of all graphs with n fixed and labelled vertices, in which the probability of each graph with M

edges is pMqN−M , where N =

(

n
2

)

. Equivalently, the edges of a labelled random graph are

chosen independently and with the same probability p. We say that a random graph G satisfies
a property Q if

P[G has Q] → 1 as n → ∞.

If a random graph G has a property Q, then we also say that almost all graphs satisfy Q.
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It turns out that, for almost all graphs, the restrained domination number is equal to the
domination number, which has two points of concentration, and the total restrained domination
number is equal to the total domination number. This is formulated in the following theorem,
which is based on the fundamental results of Bollobás [4] and Weber [18]. Remind that a
dominating set X is called a total dominating set if every vertex of X is adjacent to a vertex
of X. The total domination number γt(G), which is one of the basic domination parameters, is
the minimum cardinality of a total dominating set of G.

Theorem 14 For almost every graph, γr(G) = γ(G) and γtr(G) = γt(G). Moreover,

γr(G) = ⌊log n− 2 log log n+ log log e⌋+ ǫ,

where ǫ = 1 or 2, and log denotes the logarithm with base 1/q.

Proof: Bollobás [4] proved that a random graph G satisfies

| δ(G) − pn+ (2pqn log n)1/2 −
( pqn

8 log n

)1/2
log log n | ≤ C(n)

( n

log n

)1/2
,

where C(n) → ∞ arbitrarily slowly. Therefore,

δ(G) = pn(1 + o(1)).

Weber [18] showed that the domination number of a random graph G is equal to

k + 1 or k + 2,

where
k = ⌊log n− 2 log log n+ log log e⌋

and log denotes the logarithm with base 1/q. Let us consider a minimum dominating set D of
this size. We have

|D| = log n(1 + o(1)).

For any vertex v ∈ V (G)−D and large n,

deg v ≥ δ = pn(1 + o(1)) > log n(1 + o(1)) = |D|,

since p is fixed. Therefore, the vertex v is adjacent to a vertex in V (G)−D, i.e. D is a restrained
dominating set.

Now let us consider a minimum total dominating set T , i.e. |T | = γt(G). It is not difficult
to see that

γt(G) ≤ 2γ(G).

Therefore,
|T | ≤ 2|D| = 2 log n(1 + o(1)).

Thus, for any vertex v ∈ V (G)− T and large n,

deg v ≥ δ = pn(1 + o(1)) > 2 log n(1 + o(1)) ≥ |T |,

since p is fixed. Therefore, the vertex v is adjacent to a vertex in V (G) − T , i.e. T is a total
restrained dominating set, which is also minimum. The result follows.

However, the property of a ‘typical’ graph stated in the above theorem cannot be used as a
bound for the (total) restrained domination number for a given graph. Let us find such upper
bounds for large classes of graphs.
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Proposition 1 If δ > 0 and n < δ2/(ln δ + 1), then

γr(G) ≤
ln(δ + 1) + 1

δ + 1
n

and

γtr(G) ≤
ln δ + 1

δ
n.

Proof: Using Theorem 1, let us consider a dominating set D such that

|D| ≤
ln(δ + 1) + 1

δ + 1
n.

Note that the condition n < δ2/(ln δ + 1) can be written as follows:

δ >
ln δ + 1

δ
n.

Now, for any vertex v ∈ V (G)−D,

deg v ≥ δ >
ln δ + 1

δ
n >

ln(δ + 1) + 1

δ + 1
n ≥ |D|.

Therefore, the vertex v is adjacent to a vertex in V (G) −D, i.e. D is a restrained dominating
set.

Using the probabilistic method of the proof of Theorem 1, we can show that for any graph
G with δ > 0,

γt(G) ≤
ln δ + 1

δ
n.

Let us consider a total dominating set T such that

|T | ≤
ln δ + 1

δ
n.

For any vertex v ∈ V (G)− T ,

deg v ≥ δ >
ln δ + 1

δ
n ≥ |T |.

Therefore, the vertex v is adjacent to a vertex in V (G)−T , i.e. T is a total restrained dominating
set.

Note that the result of Bollobás [4] on the minimum degree implies that the condition
n < δ2/(ln δ + 1) is satisfied for almost all graphs, i.e. Proposition 1 gives upper bounds for a
very large class of graphs. Moreover, in the class of graphs with n < δ2/(ln δ + 1), the upper
bounds of Proposition 1 cannot be improved. This can be proved in the same way as Theorem
2.

The matching number of a graph G, denoted by β1(G), is the largest number of pairwise
non-adjacent edges in G. This number is also called the edge independence number.

Theorem 15 For any graph G with δ > 0,

γr(G) ≤
2 ln(δ + 1) + δ + 3

δ + 1
n− 2β1

and

γtr(G) ≤
2 ln δ + δ + 2

δ
n− 2β1.
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Proof: Let us consider a minimum dominating set |D| of the graph G, i.e. |D| = γ(G). Let M
be a matching with β1(G) edges:

M = (e1, e2, ..., eβ1
).

Without loss of generality we may assume that the first k edges of M have at least one end in
D, thus β1 − k edges of M have both ends in V (G) −D. It is obvious that

k ≤ |D| = γ(G).

Therefore, at least β1(G) − γ(G) edges in M have both end vertices in V (G) − D. Note that
β1(G) ≥ γ(G), because each vertex of a total dominating set S has a private neighbour not in
S, thus providing a matching of size |S|, which is at least γ(G).

Now we form a restrained dominating set D′ by adding to D all vertices not belonging to
the last β1 − k edges of M . We obtain

γr(G) ≤ |D′| = n− 2(β1 − k) ≤ n− 2β1 + 2γ.

By Theorem 1,

γ(G) ≤
ln(δ + 1) + 1

δ + 1
n.

Therefore,

γr(G) ≤
2 ln(δ + 1) + δ + 3

δ + 1
n− 2β1,

as required.
Let us prove the latter upper bound. Consider a minimum total dominating set T and the

above matching M . Using a similar technique, we can construct a total restrained dominating
set T ′ such that

γtr(G) ≤ |T ′| ≤ n− 2β1 + 2γt.

Using the probabilistic method of the proof of Theorem 1, we can show that for any graph G
with δ > 0,

γt(G) ≤
ln δ + 1

δ
n.

Therefore,

γtr(G) ≤
2 ln δ + δ + 2

δ
n− 2β1,

as required.

A matching is called perfect if it contains all vertices of a graph (or all vertices but one if n
is odd). The following corollary follows immediately from the above theorem:

Corollary 3 If G has a perfect matching, then

γr(G) ≤
ln(δ + 1) + 1

δ + 1
2n+ ǫ

and

γtr(G) ≤
ln δ + 1

δ
2n+ ǫ,

where ǫ = 0 if n is even and ǫ = 1 otherwise.

It may be pointed out that the class of graphs with a perfect matching includes all Hamil-
tonian graphs. It is well known that almost all graphs are Hamiltonian [11], thus Corollary 3
provides upper bounds for a very large class of graphs.
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5 Concluding Remarks and Open Problems

By Theorem 14, the total restrained domination number is equal to the total domination number
for almost every graph. However, we do not know exact values of the total domination number
for almost all graphs. Such a result for the domination number is known [18].

Problem 1 For almost all graphs, find points of concentration of the total, global and Roman
domination numbers.

Theorem 1 is formulated for all graphs and it gives an excellent upper bound if δ is big.
However, for small values of δ, better (sharp) bounds are known:

Theorem 16 (Ore) If δ(G) ≥ 1, then

γ(G) ≤
n

2
.

Theorem 17 ([10]) If G is a connected graph with δ ≥ 2 and it is not isomorphic to one of
seven graphs (not shown here), then

γ(G) ≤
2

5
n.

Theorem 18 ([13]) If G is a connected graph with δ ≥ 3, then

γ(G) ≤
3

8
n.

The above situation is also true for many upper bounds proved in this paper. They are good
when δ is not small. Can better upper bounds be found for small values of δ?

Problem 2 Determine sharp upper bounds for the global and Roman domination numbers of a
graph with small minimum degree.

Problem 3 Determine sharp upper bounds for the restrained and total restrained domination
numbers of a graph with a perfect matching and small minimum degree.
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