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Abstract: An optimization model is presented for obtaining optimal layout of multiple 
bi-modulus materials systems under multiple load cases (MLC). In the optimization model, 
the objective function is the linearly weighted structural compliance under MLC. The 
bi-modulus materials in a finite element are replaced by isotropic materials according to 
the stress state of that element. The equivalent mechanical properties of an element are 
expressed as the power-law function of the volume fractions (design variables) and moduli 
of the solid phases. Numerical experiments are presented to verify the validity and 
efficiency of the present algorithm. The effects of factors including the bi-modulus 
behavior of materials, the load directions and the weighting schemes of MLC are also 
investigated numerically.  
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1. Introduction  

During recent decades, topological optimization has gained considerable attention in 

both theoretical research and practical applications [1-3]. Due to their complexity, 

topology optimization problems with large numbers of design variables are still the most 

challenge task in the structural optimization field. Several optimization schemes have been 

reported, including the homogenization-based method [4], the SIMP method (solid 

isotropic material with penalization) [5-7], the ESO (evolutionary structural optimization) 

method [8,9], and the level set method [10,11]. Topology optimization has been used 

widely in the design of engineering structures such as MEMS [12], acoustics [13], 
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crashworthiness [14], fluidics [15], bone structures [16], and heat conduction [17].  

In practical engineering, a structure is often under multiple loads (MLs). To apply 

topology optimization on such structures, Díaz and Bendsøe [18] developed an 

optimization model with a single objective function using a linear weighting scheme for 

MLs. Similarly, Bendsøe et al. [19] addressed the design of material properties and 

material distribution in structures under MLC. Luo et al. [20] presented a hybrid 

fuzzy-goal multi-objective programming scheme for topology optimization that 

considered both static and dynamic loadings. Sui at al. [21] suggested an independent 

continuous mapping method for solving the topology optimization problems of a 

continuum under MLs. Balamurugan et al. [22] used a genetic algorithm for the topology 

design of structures under MLs. 

Most of the work above focused on a continuum with single material only. 

Topological design with multi-phase materials is more complex than traditional 0-1 design 

of structures with only one solid phase. For solving topology optimization problems with 

multi-phase materials, the level set method was developed [23-25]. Other methods 

including the ESO method [26], phase-field method [27], and pseudo-sensitivities scheme 

[28] have also been proposed. 

Few of the works mentioned above have considered optimization of the layout of 

bi-modulus materials. Nevertheless, bi-modulus materials that have different tensile and 

compressive moduli along the same direction are very common in engineering. For 

example, materials such as rubber, concrete, cast iron, graphite, foam materials, masonry, 

bone, alloys, and ropes/membranes exhibit bi-modulus behavior. Due to the 

stress-dependency of bi-modulus materials, deformation analysis of bi-modulus structures 

is more complex than that of structures with isotropic materials [29]. Achtziger [30] 

considered the bi-modulus effect on the final topology of a truss and found that the final 

structure under tension was obviously different from that under compression. Chang et al. 

[31] approximated the original piecewise linear stress–strain curve of a bi-modulus 

material with a derivable nonlinear curve for the topological design of a tension-only or 

compression-only material. Cai [32] solved the tension-only or compression-only design 

using a modified SIMP method, in which the tension-only or compression-only material is 



replaced with an isotropic material. Querin et al. [33] used orthotropic materials to replace 

the original bi-modulus material according to the local stress state in topology 

optimization of truss-like structures. Cai et al. [34] suggested a sampler scheme for finding 

the optimal topology of a continuum structure with one bi-modulus material.  

In the present work, topology optimization of multi-phase bi-modulus materials 

under MLs is studied. Numerical examples are presented showing the applicability and 

efficiency of the proposed algorithm. 

2. Methodology  

2.1. Statement of linear elasticity problem  

For a linear elastic structure, the basic equations read 
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and the corresponding boundary conditions are: 
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where 1Γ and 2Γ  are Dirichlet condition and Neumann condition respectively and 

1 2ΓΓΩ∪ = ∂ . 2 3orΩR R⊂  is the design domain. ε  and σ  are the strain and stress 

tensors respectively. f  is the body force vector, u is the displacement field, 0u  is the 

prescribed displacement on 1Γ , and T  is boundary force on 2Γ . D  is the elasticity 

tensor.  

2.2. SIMP approach for optimization of layout of multiple materials 

Topology optimization based on the density-like method of the SIMP approach [6] is 

adopted. In the density-like method, the equivalent modulus of a composite material is 

calculated using the material interpolation scheme of the moduli and volume fractions of 

the components in the composite. For manufacturing, the final design should have only 

one component material in one element, and interfaces between component materials 



should be on common boundaries between elements. 

For a [0, 1] design of only one component material using the SIMP method, the 

interpolation for material modulus in an element is defined as 

 ( ) ( )1
(1)
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where (1)E  means the equivalent modulus of a composite with one solid material and 

voids. [ ]1, 0, 1jρ ∈  are the volume fraction, a design variable of the j-th element, 1E  is 

the elastic modulus of the solid phase, and p  is the penalization parameter, typically 

p=3.  

When the composite has m types of solid with the moduli of 1 2, , , mE E E2 , 

( 1 2 , , mE E E> > >2 ), ( )mE  can be given based on the interpolation scheme, 
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In this equation, ,i jρ  is the summation of the volume fractions of the first i types of solid 

in the composite element, and , =1.0m jρ . This interpolation scheme is used in the present 

study. 

2.3. Optimization model 

For the stiffness design of a continuum with multiple bi-modulus materials under 

MLC, the optimization model reads 
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where the design variable ,i jρ  is the volume fraction of the i-th component material in 



the j-th element. The objective function, c , is the weighted mean compliance of structure 

under the multiple load cases ( lc , ( )1, 2, , LCl N=  ). NLC is the number of loading cases. 

lF  and lU denote the global nodal force and displacement vector in the l-th load case 

respectively. lK  is the final global stiffness matrix of a structure with many bi-modulus 

materials, and can be calculated using the well-established finite element formulation 

[35-38], “n” and “m” are respectively the total number of finite elements and the number 

of solid materials in the design domain. jv  is the j-th element volume, if  is the i-th 

material volume fraction, 0V  denotes the volume of the design domain. min ρ  is the 

minimum value of relative densities. To avoid singularity of the stiffness matrix lK , here 

we set min = 1 0.00ρ . 

2.4. Material replacement scheme for bi-modulus material 

   

(a) Bi-modulus material (b) Tension-only material (c) Compression-only material 

Fig. 1. Stress–strain curves for a common bi-modulus material and two special cases 

 

Fig. 1a shows the stress–strain curve of a bi-modulus material with tensile modulus 

of T tanE a= (green line) and compressive modulus of C tanE β= (orange line). The 

stress–strain curve is piecewise linear if α β≠ . α β=  means that the material is 

degenerated into an isotropic material. If 0β = , the material is a tensile-only material 

(Fig. 1b). If 0α = , the material is a compressive-only material (Fig. 1c). Tσ  and Cσ  

are the allowable stresses of the material under tension and compression, respectively. Tσ  



and Cσ  are usually different. 

To represent the difference between tension and compression performance, the ratio 

between TE  and CE  is defined as 
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In the deformation analysis of a structure with bi-modulus materials, many structural 

reanalyses could be required due to the nonlinearity of materials. However, the 

nonlinearity here has some particular features. For example, the bi-modulus material 

appears isotropic when it is under pure compression or under pure tension. When the 

material is in a complex stress state, e.g., the first principal stress is positive but the third is 

negative, the eigen pairs of the elasticity tensor depend on the direction and value of the 

second principal stress. Hence, in a structure with an optimal load-transmission path (LTP), 

most of the structure is under a simple stress state. At the junction of adjacent parts, 

however, the material may be transverse isotropic because of its complex stress state. This 

condition implies that we can use an appropriate isotropic material to replace the 

bi-modulus material during structural deformation analysis. The difference in structural 

stiffness caused by such replacement can be modified step by step. The merit of material 

replacement is that the structural deformation analysis becomes a linear analysis after 

replacement. The modification of the local stiffness difference can be performed during 

the topology optimization process. Two aspects must therefore be given in detail for the 

material replacement scheme. The first is selection of the isotropic material that will 

replace the bi-modulus material in structural deformation analysis. The second is 

modification of the local stiffness due to material replacement. 

2.4. 1 Selection of isotropic material for local replacement 

For a given element in a design domain, ss  and sε ( 1, 2, 3s = ) denote the principal 

stresses and principal strains.  

(1) If 1 2 30 σ σ σ≥ > > , the compressive modulus of the bi-modulus material should 

be the same as that of the isotropic material; 



(2) If 1 2 3 0σ σ σ> > ≥ , the tensile modulus of the bi-modulus material should be the 

same as that of the isotropic material; 

(3) If the element is under a complex stress state, i.e., 1 3 0σ σ⋅ < , the elastic modulus 

depends on the comparison between the values of the tension strain energy 

density (SED) and compression SED, which considers the influence of the 

second principal stress.  

Mathematically, the modulus of the isotropic material to replace the i-th bi-modulus

 material can be obtained from the equation:  
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where the tension SED ( TSED ) and compression SED ( CSED ) are determined by the 

equations: 
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where GN  is the number of Gaussian integral points in the element. 

2.4.2 Modification of local stiffness 

Accurate deformation of a structure depends on an accurate global stiffness matrix, 

which is formed by using the local (element) stiffness matrix. When a difference appears 

after material replacement, the local stiffness matrix of the element with the isotropic 

material is different from that of the same element with the original bi-modulus material. 

To eliminate the difference, under the same stress state, the same element should have the 

same strain energy density before and after replacement. According to this principle, we 

can calculate the modification factor by comparing the SEDs before and after replacement. 

Under a complex stress state at the k-th iteration, the SED of the element with the 



new isotropic material is 
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and the effective SED of the element with the original bi-modulus materials is 
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where -1=i i iγ ρ ρ-  is the volume fraction of the i-th material in the element.  

The value of the ( )sign i ⋅  can be calculated using either Eq.(11) or Eq.(12) below. 

(a) If the element has compressive moduli at the (k-1)-th iteration and tensile moduli 

should be used at the current (k-th) iteration, the value of the ( )sign i ⋅  is 
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where ( )
TCE

iR  is the moduli ratio of the i-th bi-modulus material. 

(b) If the element has tensile moduli at the (k-1)-th iteration and compressive moduli 

should be used at the current k-th iteration, the value of the ( )sign i ⋅  is 
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By comparing Eqs.(10) and (11), we find that the two SEDs are identical when the 

element is under pure tension or pure compression. If the element is under a complex 

stress state, the two SEDs are usually different. The difference of the local effective 

stiffness of the j-th element at the k-th iteration is defined as 
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The stiffness matrix of the j-th element with the “new” isotropic materials can be given as 

[36,39,40] 

 d
j

T
j j j jv

v= ⋅ ⋅∫k B D B . (15) 

where jB  is the displacement–strain matrix, and jD  is the elasticity matrix of the j-th 



element. 

The modified stiffness matrix of the element is defined as 
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For the l-th loading case, the mean compliance of the structure with bi-modulus 

materials (in Eq.(5)) can be obtained, i.e., 
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2.5. Optimization procedure 

In the present study, the Method of Moving Asymptotes (MMA) [41] is adopted to 

solve the optimization problem defined in Eq.(5). The partial differential equations for 

structural deformation expressed in Eq.(1) with boundaries in Eq.(2) are solved by the 

commercial software ANSYS 12.0. In the following numerical examples, the initial elastic 

moduli of the materials in the elements are the same as the tensile modulus of the first 

solid material (Material 1). All the initial design variables are considered to be equal. The 

MMA procedure contains the following steps: 

Step 1) Build a finite element model of the structure, initiate parameters in 

optimization, and let 1i = ; 

Step 2) Find the deformation fields of the structure under MLC by finite element 

analysis; 

Step 3) Calculate the SED, tension SED, compression SED and the local effective 

SED of each element in the design domain; 

Step 4) Chose the moduli of the materials in each element by comparing tension SED 

and compression SED; calculate the value of fM  for each element under a 

complex stress state; 

Step 5) Compute the values of the objective and constraint functions and their 

sensitivities; 

Step 6) Update the design variables for each element by the MMA optimizer [41]; 

Step 7) Check the convergence: if the termination criterion is not satisfied, return to 



Step 2, else go to Step 8;  

Step 8) Judge, if 1i m< − , then, 1i i= + , return to Step 2, otherwise, go to Step 9; 

Step 9) Save and stop. 

The termination criterion is either that the iteration number is greater than 100 or that 

the change of compliance of the structure satisfies the condition: 

 { }( ), 1, 2, 3, 4, 5k t k

k

c c t
c

η− −
≤    ∈ . (18) 

where η  is the algorithm tolerance.  

 

3. Examples and Discussion 

In this section, numerical examples are considered and assessed by the present 

algorithm. The code is compiled by combining software MATLAB and ANSYS (V12.0) 

[42]. In all examples, four-node quadrilateral plane stress elements are employed in the 

finite element analysis. In optimization, the objective is to minimize the compliance of the 

structure. The Poisson’s ratios of materials in all examples are set to be 0.2. 

3.1. Example 1: Validity assessment 

The structure shown in Fig. 2a is a cantilever beam with dimensions 0.7m × 0.4m × 

0.02m, and is meshed with 120 × 60 elements. The left side of the structure is fixed. There 

are two solids and a void phase in the structure. The material tensile moduli of the two 

solids are 80GPa and 40GPa, respectively. (1)
TCE 2 1R = >  and (2)

TCE 0.5 1R = < . Volume 

fractions of the two solids and void phase are 0.12, 0.12, and 0.76, respectively. 

The structure is under two loading cases, i.e., 1P =2000N in the first case, P2=2000N 

in the second case. 1P  is applied on the center of the right side of the structure. 2P  is 

applied on the center of the design domain (Fig. 2a). The weighting scheme is 

1 20.2 and 0.8w w= = . 

From Fig. 2b, we find that Material 1 (red) is mainly under tension and Material 2 

(green) is under compression. If we consider the components in the final structure as LTP, 



Material 1 is mainly on tensile LTPs and Material 2 on compressive LTPs. From the RTCE 

values of the two materials we know that the two materials have higher stiffness under the 

current loading states with 1 20.2 and 0.8w w= = . Briefly, the moduli of the two materials 

are the same, i.e., 80 GPa, in the final structural topology, a result that can also be obtained 

by using single phase topology optimization with an approach such as the SIMP method. 

With a different weighting scheme, we believe that the amount of material supporting the 

two forces would be different. But the optimal materials layout must have the property 

stated above, that the majority of the materials in the final structure should have higher 

moduli in order to decrease structural compliance. It is concluded that the correctness of 

the algorithm is verified. 

 
 

(a) Initial design (b) 1 20.2, 0.8w w= =  

Fig. 2. Structural and optimal shape under different MLC (Material 1: red, Material 2: green, void: 
white) 
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Fig. 3. Iteration histories of the mean compliance of structure under two loading cases with three 



different weighting schemes (η =0.01) 

 

Fig. 3 demonstrates that the structural compliance approaches 0.19782 N.m after 101 

iterations for the structure under MLC with the weighting scheme of 

1 20.2 and 0.8w w= = . Because no internal iteration occurs within each update of the 

design variables, only 101 structural deformation analyses are needed. Hence, the present 

algorithm has acceptable efficiency during optimization. 

 

3.2. Example 2: Effect of RTCE on final materials layouts 

The design domain is shown in Fig. 4 with the dimensions 1.6m × 0.5m × 0.01m. The 

structure is modelled with 160 × 50 elements. Two loading cases are considered. In the 

first case, 1P =2000N is applied at the point “K1”. In the second case, two concentrated 

forces 2P =2000N are applied at two points “K2”. The design domain contains two solid 

materials and one void phase, with the volume fractions 0.16, 0.16, and 0.68, respectively. 

The tensile moduli of the two solids (Material 1 and Material 2) are 100GPa and 50GPa, 

respectively. If the two materials are bi-modulus materials, the values of RTCE of the two 

solids are 2 and 0.5, respectively. For comparison, the optimal layouts of the two isotropic 

solids are also given. 

Three weighting schemes are considered: 
(1) 1 21, 0,w w= =  (only 1P  is active), 

(2) 1 20, 1,w w= =  (only 2P  is active), 

(3) 1 20.5, 0.5.w w= =  

 

 

Fig. 4. Initial design domain 
 



When the structure is only under the load 1P , the final layout of the two solid 

bi-modulus materials (Fig. 5a) is different from the traditional design, that is, the isotropic 

materials layout. In Fig. 5a, Material 1 is under pure tension because its tensile modulus is 

greater than the compressive modulus ( (1)
TCE 2 1R = > ). Almost all of Material 2 is under 

compression due to its compressive modulus being greater than the tensile modulus 

( (2)
TCE 0.5 1R = < ). In Fig. 5b, the interfaces between the two isotropic solids are more 

complex than in Fig. 5a. 

When the structure is subjected only to 2P , the bi-modulus materials layout is also 

different from that of isotropic materials. The interface of the two bi-modulus solids (Fig. 

5c) is also simpler than that between two isotropic solids (Fig. 5d). Hence, when the 

moduli of the two solids are clearly different, the complex bi-modulus behavior of the 

materials does not imply that they have complex interface, which would be difficult for 

manufacturing.  

Under the two loading cases, the final materials layouts (Fig. 5e, f) are different from 

those in the structure under a single load. Material 1 (bi-modulus) is still mainly under 

tension, and most of Material 2 is still under compression (Fig. 5e). 
 

  
(a) 1 21, 0w w= = , bi-modulus materials (b) 1 21, 0w w= = , isotropic materials 

  
(c) 1 20, 1w w= = , bi-modulus materials (d) 1 20, 1w w= = , isotropic materials 

  
(e) 1 20.5, 0.5w w= = , bi-modulus materials (f) 1 20.5, 0.5w w= = , isotropic materials 



Fig. 5. Final materials distribution in the structure for different cases (Material 1: red, Material 2: 
green, void: white) 

3.3. Example 3: Effect of load directions 

The dimensions of the structure used in this example are 1.6m × 0.4m × 0.01m. The 

structure is simply supported and the finite element mesh is 160 × 40. There are two solids 

(Material 1 and Material 2) and one void phase in the structure. The two solids have the 

tensile moduli of 100GPa and 50GPa, respectively. They are bi-modulus materials, and the 

values of the RTCE of the two solids are 2 and 0.5, respectively. The volume fractions of the 

three phases are 0.2, 0.2, and 0.6, respectively.   
The structure is under two loading cases with two vertical concentrated forces, 1P  

and 2P , applied separately on the centers of the upper and lower sides of structure. Both 

forces have a magnitude of 2000N. In different schemes, the directions of the two forces 

may be different. Three schemes are considered (see the uppermost layer of Fig. 6). 

 

 

 

 

   
Scheme 1 ( =0.01η ) Scheme 2 ( =0.01η ) Scheme 3 ( =0.001η ) 

   
1 20.2, 0.8w w= =  

1 20.2, 0.8w w= =  
1 20.2, 0.8w w= =  

   
1 20.5, 0.5w w= =  1 20.5, 0.5w w= =  1 20.5, 0.5w w= =  

   
1 20.8, 0.2w w= =  1 20.8, 0.2w w= =  1 20.8, 0.2w w= =  

Fig. 6. The final materials layouts in the structure under different schemes (Material 1: red, Material 2: 
green, void: white) 

 



The results for scheme 1 (the left column) demonstrate that Material 1 (red) is mainly 

under tension for two loading cases, and Material 2 is under compression when the 

directions of the two forces are vertical upward. The reason is that the tensile modulus of 

Material 1 is greater than the compressive modulus ( (1)
TCE 2 1R = > ), whereas Material 2 has 

higher compressive stiffness ( (2)
TCE 0.5 1R = < ). 

This situation changes when the directions of the two forces are vertical downward 

(scheme 2). In the central column (scheme 2), Material 1 layouts are near the lower side of 

the beam rather than near the upper side as in scheme 1. 

If the directions of the two forces are different, as in scheme 3, the layouts of the two 

bi-modulus materials are clearly different from those in schemes 1 and 2. Moreover, the 

locations of Material 1 in the final structure depend on the weighting coefficients of the 

two load cases. For example, Material 1 layouts are near the upper side when 

1 20.2, 0.8w w= =  (P2 has higher influence on structural compliance than P1), in the 

central area of the structure when 1 20.5, 0.5w w= = , or near the bottom when 

1 20.8, 0.2w w= = . 

This phenomenon does not occur in either scheme 1 or scheme 2. The weighting 

coefficients of the two loading cases have only a slight influence on the positions of the 

material interfaces in scheme 1. Only when 1 20.8, 0.2w w= =  is the topology of the 

structure different from the other topologies in scheme 2. 
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Fig. 7. Iteration histories of the mean compliance of the structure under MLC with different load 

directions/schemes. 

 



Table 1. Final iterations and values of the objective function (Obj) (or mean compliance) of the 
structure with different load direction schemes.  

 Scheme 1 ( =0.01η ) Scheme 2 ( =0.01η ) Scheme 3 ( =0.001η ) 

Weighting Iterations Obj (N.m) Iterations Obj (N.m) Iterations Obj (N.m) 

1 20.2, 0.8w w= =  77 0.51137 75 0.52606 186 0.43058 

1 20.5, 0.5w w= =  68 0.51368 68 0.51055 168 0.73453 

1 20.8, 0.2w w= =  67 0.50587 79 0.50121 121 0.52510 

 

In Fig. 7 and Table 1, we find that the number of iterations does not exceed 200 in the 9 

different cases. With the same weighting coefficients, namely 1 20.2, 0.8w w= = , the 

optimal value of structural compliance is different for different load directions. 

Simultaneously, the layout differences among the three schemes are attributable to the 

bi-modulus behavior of the two materials under loads with different directions [43]. 

 

4. Conclusions 

Using the algorithm presented in this study to achieve optimal layout of multiple 

bi-modulus materials in a continuum under MLC, three numerical tests are considered. 

From the numerical results some remarkable conclusions are drawn. 

(1) The computational cost of the present algorithm is very close to that of simple 

single material layout optimization by the SIMP method. 

(2) In a stiffness design, materials with higher modulus should be laid out on the 

main LTPs. When the differences among the moduli of bi-modulus materials are not great, 

on the tensile LTPs, materials with RTCE>1 are usually laid out. Materials with RTCE<1 are 

usually laid out on the compressive LTPs.  

(3) The final layouts of bi-modulus materials are sensitive to the values of RTCE and 

the load conditions. Under the same loading conditions, the interfaces between bi-modulus 

materials may be clearer than those between isotropic materials.  

(4) The optimal layout of bi-modulus materials depends on the force directions 

(forward and reverse). 

Hence, the present algorithm is applicable and effective for analyzing the 

performance of structures with many bi-modulus materials and under MLC.  
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