Skip to main content
Log in

Luminal hyperosmolarity decreases Na transport and impairs barrier function of sheep rumen epithelium

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The effects of luminal hyperosmolarity on Na and Cl transport were studied in rumen epithelium of sheep. An increase of luminal osmotic pressure with mannitol (350 and 450 mosm/l) caused a significant increase of tissue conductance, G T, which is linearly correlated with flux rates of 51Cr-EDTA and indicates an increase of passive permeability. Studies with microelectrodes revealed, that an increase of the osmotic pressure caused a significant increase of the conductance of the shunt pathway from 1.23±0.10 (control) to 1.92±0.14 mS cm−2 (450 mosm/l) without a change of fractional resistance. Hyperosmolarity significantly increased J sm and reduced J net Na. The effect of hyperosmolarity on J ms Na is explained by two independent and opposed effects: increase of passive permeability and inhibition of the Na+/H+ exchanger. Hypertonic buffer solution induced a decrease of the intracellular pH (pHi) of isolated ruminal cells, which is consistent with an inhibition of Na+/H+ exchange, probably isoform NHE-3, because NHE-3-mRNA was detectable in rumen epithelium. These data are in contrast to previous reports and reveal a disturbed Na transport and an impaired barrier function of the rumen epithelium, which predisposes translocation of rumen endotoxins and penetration of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

I sc :

Short circuit current in μeq cm−2 h−1

J ms :

Mucosal to serosal flux in μeq cm−2 h−1

J sm :

Serosal to mucosal flux in μeq cm−2 h−1

J net :

JmsJsm in μeq cm−2 h−1

NHE:

Na+/H+ exchanger

NHERF:

Na+/H+ exchanger regulatory factor

G :

Conductance in mS cm−2

G T :

Conductance of the epithelium

G a,b,p :

Conductance of the apical, basolateral membrane or the paracellular pathway

G c :

Conductance of the epithelial cell

ROP:

Ruminal osmotic pressure in mosm/l

hyperROP:

Hypertonic ruminal osmotic pressure

SCFA:

Short chain fatty acids

PDt :

Transepithelial potential difference in mV

PDa :

Potential difference of the apical membrane in mV

fRa :

Fractional resistance = ΔPDa/ΔPDt)

REL:

Resistance of the (micro)electrode in Ohm

R t :

Resistance of the epithelium in cm2

R a :

Resistance of the apical membrane in Ω cm2

R b :

Resistance of the basolateral membrane in Ω cm2

R p :

Resistance of the paracellular pathway in Ω cm2

REC:

Rumen epithelial cells

References

  • Abdoun K, Wolf K, Martens H (2003) Effect of ammonia on Na+ transport across isolated rumen epithelium of sheep is diet dependent. Br J Nutr 90:751–758

    Article  PubMed  CAS  Google Scholar 

  • Anderson PH (2003) Bovine endotoxicois—some aspects of relevance to production diseases. A review. Acta vet scand 98:141–155

    Article  Google Scholar 

  • Bagorda A, Guerra L, Di Sole F, Helmle-Kolb C, Favia M, Jacobson KA, Casavola V (2002) Extracellular adenine nucleotides regulate Na+/H+ exchanger NHE-3 activity in A6-NHE-3 transfectants by a cAMP/PKA-dependent mechanism. J Membr Biol 188:249–259

    Article  PubMed  CAS  Google Scholar 

  • Bennink MR, Tyler TR, Ward GM, Johnson DE (1978) Ionic milieu of bovine and ovine rumen as affected by diet. J Dairy Sci 61:315–321

    Article  PubMed  CAS  Google Scholar 

  • Blazer-Yost BL, Helman SI (1997) The amiloride-sensitive epithelial Na+ channel: binding sites and channel densities. Am J Physiol 272:C761–C769

    PubMed  CAS  Google Scholar 

  • Brink DR, Lowry SR, Stock RA, Parrot JC (1990) Severity of liver abscesses and efficiency of feed utilization of feedlot cattle. J Anim Sci 68:1201–1207

    PubMed  CAS  Google Scholar 

  • Cabado AG, Yu FH, Kapus A, Lukacs G, Grinstein S, Orlowski J (1996) Distinct structural domains confer cAMP sensitivity and ATP dependence to the Na+/H+ exchanger NHE-3 isoform. J Biol Chem 271:3590–3599

    Article  PubMed  CAS  Google Scholar 

  • Carter RR, and Grovum L (1990) A review of the physiological significance of hypertonic body fluids on feed intake and ruminal function: salivation, motility and microbes. J Anim Sci 68:2811–2832

    PubMed  CAS  Google Scholar 

  • Chien WJ, Stevens CE (1972) Coupled active transport of Na+ and Cl across forestomach epithelium. Am J Physiol 223:997–1003

    PubMed  CAS  Google Scholar 

  • Civan MM, DiBona DR (1974) Pathways for movement of ions and water across toad urinary bladder II. Site and mode of action of vasopressin. J Membr Biol 19:195–220

    Article  PubMed  CAS  Google Scholar 

  • Counillon L, Pouyssegur J (2000) The expanding family of eucaryotic Na+/H+ exchangers. J Biol Chem 275:1–4

    Article  PubMed  CAS  Google Scholar 

  • DiBona DR, Civan MM (1973) Pathways for movements of ions and water across toad urinary bladder I. Anatomic site of transepithelial shunt pathways. J Membr Biol 12:101–128

    Article  PubMed  CAS  Google Scholar 

  • Dirksen G (1970) Acidosis. In: Phillipson AT (ed) Physiology of digestion and metabolism in the ruminant. Oriel Press, New-Castle-upon-Tyne, pp 612–625

    Google Scholar 

  • Dirksen G (1985) The rumen acidosis complex—recent knowledge and experiences (1). Tierärztl Prax 13:501–512

    PubMed  CAS  Google Scholar 

  • Dobson A, Sellers AF, Gatewood VH (1976) Absorption and exchange of water across rumen epithelium. Am J Physiol 231:1588–1594

    PubMed  CAS  Google Scholar 

  • Engelhardt WV (1970) Movement of water across the rumen epithelium. In: Phillipson AT (ed) Physiology of digestion and metabolism in the ruminant. Oriel Press, New-Castle-upon-Tyne, pp 132–146

    Google Scholar 

  • Franz TJ, van Bruggen JT (1967) Hyperosmolarity and the net transport of nonelectrolytes in frog skin. J Gen Physiol 50:933–949

    Article  PubMed  CAS  Google Scholar 

  • Franz TJ, Galey WR, van Bruggen JT (1968) Further Observations on asymmetrical solute movement across membranes. J Gen Physiol 51:1–12

    Article  PubMed  CAS  Google Scholar 

  • Frizzell RA, Schultz SG (1972) Ionic conductance of extracellular shunt pathways in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences. J Gen Physiol 59:318–346

    Article  PubMed  CAS  Google Scholar 

  • Frömter E, Gebler B (1977) Electrical properties of amphibian urinary bladder epithelia. III. The cell membrane resistances and the effect of amiloride. Pflügers Arch 371:99–108

    Article  PubMed  Google Scholar 

  • Gäbel G, Martens H, Sündermann M, Galfi P (1987) The effect of diet, intraruminal pH and osmolarity on sodium, chloride and magnesium absorption from the temporarily isolated and washed reticulo-rumen of sheep. Q J Exp Physiol 72:501–511

    PubMed  Google Scholar 

  • Gäbel G, Vogler S, Martens H (1991) Short chain fatty acids and CO2 as regulators of Na+ and Cl absorption in isolated sheep rumen mucosa. J Comp Physiol B 161:419–426

    Article  PubMed  Google Scholar 

  • Gäbel G, Butter H, Martens H (1999) Regulatory role of cAMP in transport of Na+, Cl and short-chain fatty acids across sheep ruminal epithelium. Exp Physiol 84:333–345

    Article  PubMed  Google Scholar 

  • Gálfi P, Neogrády S, Kutas F (1981) Culture of epithelial cells from bovine ruminal mucosa. Vet Res Commun 4, 295–300

    Article  PubMed  Google Scholar 

  • Gawenis LR, Franklin CL, Simpson JE, Palmer BA, Walker NM, Wiggins TM, Clarke LL (2003) cAMP inhibition of murine intestinal Na+/H+ exchange requires CFTR-mediated cell shrinkage of villus epithelium. Gastroenterology 125:1148–1163

    Article  PubMed  CAS  Google Scholar 

  • Gemmel RT, Stacy BD (1973) Effects of ruminal hyperosmolality on the ultrastructure of ruminal epithelium and their relevance of sodium transport. Q J Exp Physiol 58:315–323

    Google Scholar 

  • Gorodeski GI, De Santis BJ, Goldfarb J, Utian WH, Hopfer U (1995) Osmolar changes regulate the paracellular permeability of cultured human cervical epithelium. Am J Physiol 269:C870–C877

    PubMed  CAS  Google Scholar 

  • Harrison FA, Keynes RD, Rankin JC, Zurich L (1975) The effect of ouabain on ion transport across isolated sheep rumen epithelium. J Physiol 249:669–677

    PubMed  CAS  Google Scholar 

  • Kapus A, Grinstein S, Wasan S, Kandasamy R, Orlowski J (1994) Functional characterization of three isoforms of the Na+/H+ exchanger stably expressed in chinese hamster ovary cells. J Biol Chem 269:23544–23552

    PubMed  CAS  Google Scholar 

  • Kurashima K, Yu FH, Cabado AG, Szabo EZ, Grinstein S, Orlowski J (1997) Identification of sites required for down-regulation of Na+/H+ exchanger NHE3 activity by cAMP-dependent protein kinase. Phosphorylation-dependent and -independent mechanisms. J Biol Chem 272:28672–28679

    Article  PubMed  CAS  Google Scholar 

  • Lang I, Martens H (1999) Na transport in sheep rumen is modulated by voltage-dependent cation conductance in apical membrane. Am J Physiol 277:G609–G618

    PubMed  CAS  Google Scholar 

  • Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    PubMed  CAS  Google Scholar 

  • Levine SA, Montrose MH, Tse CM, Donowitz M (1993) Kinetics and regulation of three cloned mammalian Na+/H+ exchangers stably expressed in a fibroblast cell line. J Biol Chem 268:25527–25535

    PubMed  CAS  Google Scholar 

  • López S, Deb Hovell FD, MacLeod NA (1994) Osmotic pressure, water kinetics and volatile fatty acid absorption in the rumen of sheep sustained by intragastric infusions. Br J Nutr 71:153–168

    Article  PubMed  Google Scholar 

  • Martens H, Gäbel G, Strozyk B (1991) Mechanism of electrically silent Na and Cl transport across the rumen epithelium of sheep. Exp Physiol 76:103–114

    PubMed  CAS  Google Scholar 

  • Nagaraja TG, Laudert SB, Parrot JC, Stokka GL (1996) Liver abscesses in feedlot cattle. Part I. Comp Cont Educ Pract 18:S230–S241

    Google Scholar 

  • Nath SK, Hang CY, Levine SA, Yun SCH, Montrose MH, Donowitz M, Tse CM (1996) Hyperosmolarity inhibits the Na+/H+ exchanger isoforms NHE2 and NHE-3: an effect opposite to that on NHE1. Am J Physiol 270:G431–G441

    PubMed  CAS  Google Scholar 

  • Pedersen SF, Varming C, Christensen ST, Hoffmann EK (2002) Mechanisms of activation of NHE by cell shrinkage and by calyculin A in Ehrlich ascites tumor cells. J Membr Biol 189:67–81

    Article  PubMed  CAS  Google Scholar 

  • Schweigel M, Vormann M, Martens H (2000) Mechanisms of Mg2+ transport in cultured epithelial cells. Am J Physiol 278:G400–G408

    CAS  Google Scholar 

  • Sehested J, Diernes L, Møller PD, Skadhauge E (1996) Transport of sodium across the isolated bovine rumen epithelium: interaction with short-chain fatty acids, chloride and bicarbonate. Exp Physiol 81:79–94

    PubMed  CAS  Google Scholar 

  • Smith HA (1944) Ulcerative lesions of the bovine rumen and their possible relation to hepatic abscesses. Am J Vet Res 5:234–242

    Google Scholar 

  • Soleimani M, Bookstein C, McAteer JA, Hattabaugh YJ, Bizal GL, Musch MW, Villereal M, Roa MC, Howard RL (1994) Effect of high osmolality on Na+/H+ exchanger in renal proximal tubule cells. J Biol Chem 269:15613–15618

    PubMed  CAS  Google Scholar 

  • Soybel DI, Ashley SW, DeSchryver-Kecskemeti K, Cheung LY (1987) Effects of luminal hyperosmolality on cellular and paracellular ion transport pathways in Necturus antrum. Gastroenterology 93:456–465

    PubMed  CAS  Google Scholar 

  • Stacy BD, and Warner ACJ (1966) Balances of water and sodium in the rumen during feeding, osmotic stimulation of sodium absorption in the sheep. Q J Exp Physiol 51:79–93

    CAS  Google Scholar 

  • Su X, Pang T, Wakabayashi S, Shigekawa M (2003) Evidence for involvement of the putative first extracelluar loop in differential volume sensitivity of Na+/H+ exchangers NHE1 and NHE2. Biochemistry 42:1086–1094

    Article  CAS  Google Scholar 

  • Tabaru H, Ikeda K, Kadota E, Murakami Y, Yamada H, Sasaki N, Takeuchi A (1990) Effects of osmolality on water, electrolytes and VFAs absorption from the isolated ruminoreticulum in the cow. Jpn J Vet Sci 52:91–96

    CAS  Google Scholar 

  • Ussing HH (1965) Relationship between osmotic reactions and active sodium transport in the frog skin epithelium. Acta Physiol Scand 63:141–155

    Article  PubMed  CAS  Google Scholar 

  • Warner AC, Stacy BC (1968) The fate of water in the rumen. 2. Water balances throughout the feeding cycle in sheep. Br J Nutr 22:389

    Article  Google Scholar 

  • Warner ACJ, Stacy BC (1972) Water, sodium and potassium movements across the rumen wall of sheep. Q J Exp Physiol 57:103–119

    CAS  Google Scholar 

  • Warner ACI, Stacy BC (1977) Influence of ruminal and plasma osmotic pressure on salivary secretion in sheep. Q J Exp Physiol 62:133

    CAS  Google Scholar 

  • Watts III BA, Good DW (1994) Apical membrane Na+/H+ exchange in rat medullary thick ascending limb. J Biol Chem 269:20250–20255

    PubMed  Google Scholar 

  • Weinman EJ, Shenolikar S, Kahn AM (1987) cAMP-associated inhibition of Na+/H+ exchanger in rabbit brush-border membranes. Am J Physiol 252:F19–F25

    PubMed  CAS  Google Scholar 

  • Weinman EJ, Steplock D, Shenolikar S (2001) Acute regulation of NHE-3 by protein kinase A requires a multiprotein signal complex. Kidney Int 60:450–454

    Article  PubMed  CAS  Google Scholar 

  • Welch JG (1979) Rumination and particle size, rumen osmotic pressure and feed intake in ruminants. In: Proceedings Cornell nutrition conference, pp 49–51

  • Wolffram RS, Frischknecht R, Scharrer E (1989) Influence of theophylline on the electrical potential difference and on ion fluxes (Na, Cl, K) across isolated rumen epithelium of sheep. J Vet Med A 36:755–762

    Article  CAS  Google Scholar 

  • Yun CH, Tse C-M, Nath S, Levine SL, Donowitz M (1995) Structure/function studies of mammalian Na-H exchangers–an update. J Physiol 482:1–6

    PubMed  Google Scholar 

  • Zachos NC, Tse M, Donowitz M (2005) Molecular physiology of intestinal Na+/H+ exchange. Annu Rev Physiol 67:411–443

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Wiederkehr MR, Fan L, Collazo RL, Crowder LA, Moe OW (1999) Acute inhibition of Na/H exchange and NHE-3 by cAMP. Role or protein kinase A and NHE-3 phosposerines 552 and 605. J Biol Chem 274:3978–3987

    Article  PubMed  CAS  Google Scholar 

  • Zizak M, Lamprecht G, Steplock D, Tariq N, Shenolikar S (1999) cAMP induced phosphorylation and inhibition of Na+/H+ exchanger (NHE3) is dependent on the presence but not the phosphorylation of NHERF. J Biol Chem 274:24753–24758

    Article  PubMed  CAS  Google Scholar 

  • Franz TJ, Galey WR, van Bruggen JT (1968) Further observations on asymmetrical solute movement across membranes. J Gen Physiol 51:1–12

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

we gratefully acknowledge the expert technical assistance of Katharina Wolf and the valuable assistance of Sophie Heipertz. Thanks to Dr. H.-J. Lang (HMR-Germany GmbH, Frankfurt a. Main, Germany) for kindly providing us with HOE 694 and S3226. This study was supported by the Schaumann Foundation (scholarship Almut Böttcher, and M. Freyer) and the Margarete-Markus-Charity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Martens.

Additional information

Communicated by G. Heldmaier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweigel, M., Freyer, M., Leclercq, S. et al. Luminal hyperosmolarity decreases Na transport and impairs barrier function of sheep rumen epithelium. J Comp Physiol B 175, 575–591 (2005). https://doi.org/10.1007/s00360-005-0021-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-005-0021-3

Keywords

Navigation