Skip to main content
Log in

Funktionelle Glaukomdiagnostik

Functional glaucoma diagnosis

  • CME Weiterbildung • Zertifizierte Fortbildung
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

In der Glaukomdiagnostik zählt die klassische Weiß-weiß-Perimetrie zum Goldstandard, um den funktionellen Schaden der glaukomatösen Optikusneuropathie erfassen zu können. Da sie aber erst nach einem Verlust von 30–40% der retinalen Nervenfasern auffällig wird, ist mit dieser Perimetrieart eine Frühdiagnostik kaum möglich und sinnvoll. Deshalb wurden in den letzten Jahren zahlreiche neuere perimetrische Verfahren entwickelt, die besonders für den frühen Nachweis von Gesichtsfeldschäden geeignet sein sollen. In diesem Übersichtsartikel sollen die Grundlagen der retinalen Ganglienzellarten vermittelt werden, um die theoretischen Ansätze der neuen perimetrischen Methoden besser zu verstehen. Außerdem werden die derzeit wichtigsten, kommerziell verfügbaren perimetrischen Vertreter vorgestellt.

Abstract

Achromatic perimetry is the gold standard in glaucoma diagnosis for detecting functional defects from glaucomatous optic neuropathy. Because achromatic perimetry is only able to detect scotomas after loss of up to 30–40% of retinal ganglion cells, early diagnosis using this method is rarely possible. Therefore, a lot of new perimetric procedures have been developed in recent years to detect new scotomas at a very early stage. This review summarizes the theoretical background of retinal ganglion cells in order to better understand the theoretical approaches of new perimetric methods. In addition, the most important commercial perimetric devices currently available are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Adams CW, Bullimore MA, Wall M et al (1999) Normal aging effects for frequency doubling technology perimetry. Optom Vis Sci 76:582–587

    Article  PubMed  CAS  Google Scholar 

  2. Anderson AJ, Johnson CA (1999) Effect of dichoptic adaptation on frequency-doubling perimetry. Optom Vis Sci 76:582–587

    Article  Google Scholar 

  3. Artes PH, Nicolela MT, McCormick TA et al (2003) Effects of blur and repeated testing on sensitivity estimates with frequency doubling perimetry. Invest Ophthalmol Vis Sci 44:646–652

    Article  PubMed  Google Scholar 

  4. Autzen T, Work K (1990) The effect of learning and age on short-term fluctuation and mean sensitivity of automated static perimetry. Acta Ophthalmol 68:327–330

    CAS  Google Scholar 

  5. Bach M, Hoffmann MB (2008) Update on the pattern electroretinogram in glaucoma. Optom Vis Sci 85:386–395

    Article  PubMed  Google Scholar 

  6. Bayer AU, Erb C (2002b) Short wavelength automated perimetry, frequency doubling technology perimetry, and pattern electroretinography for prediction of progressive glaucomatous standard visual field defects. Ophthalmology 109:1009–1017

    Article  PubMed  Google Scholar 

  7. Bayer AU, Maag KP, Erb C (2002) Detection of optic neuropathy in glaucomatous eyes with normal standard visual fields using a test battery of short-wavelength automated perimetry and pattern electroretinography. Ophthalmology 109:1350–1361

    Article  PubMed  Google Scholar 

  8. Bernardi L, Costa VP, Shiroma LO (2007) Flicker perimetry in healthy subjects: influence of age and gender, learning effect and short-term fluctuation. Arq Bras Oftalmol 70:91–99

    Article  PubMed  Google Scholar 

  9. Blumenthal EZ, Haddad A, Horani A, Anteby I (2004) The reliability of frequency-doubling perimetry in young children. Ophthalmology 111:435–439

    Article  PubMed  Google Scholar 

  10. Brush MB, Chen PP (2004) Learning effect among perimetric novices with screening C-20-1 frequency doubling technology perimetry. Am J Ophthalmol 137:551–552

    Article  PubMed  Google Scholar 

  11. Brusini P, Busatto P (1998) Frequency doubling perimetry in glaucoma early diagnosis. Acta Ophthalmol Scand 227:23–24

    Google Scholar 

  12. Burgansky-Eliash Z, Wollstein G, Patel A et al (2007) Glaucoma detection with matrix and standard achromatic perimetry. Br J Ophthalmol 91:933–938

    Article  PubMed  Google Scholar 

  13. Burnstein Y, Ellish N, Magbalon M, Higginbotham EJ (2000) Comparison of frequency doubling perimetry with Humphrey visual field analysis in a glaucoma practice. Am J Ophthalmol 129:328–333

    Article  PubMed  CAS  Google Scholar 

  14. Cello KE, Nelson-Quigg JM, Johnson CA (2000) Frequency doubling technology perimetry for detection of glaucomatous visual field loss. Am J Ophthalmol 129:314–322

    Article  PubMed  CAS  Google Scholar 

  15. Dacey DM, Lee BB (1994) The „blue-on“ opponent pathway in primate retina originates from a distinct ganglion cell type. Nature 367:731–735

    Article  PubMed  CAS  Google Scholar 

  16. Dandona L, Hendrickson A, Quigley HA (1991) Selective effects of experimental glaucoma on axonal transport by terinal ganglion cells to the dorsal lateral geniculate nucleus. Invest Ophthalmol Vis Sci 32:1593–1599

    PubMed  CAS  Google Scholar 

  17. Delgado MF, Nguyen NTA, Cox TA et al (2002) Automated perimetry. A report by the American Academy of Ophthalmology. Ophthalmology 109:2362–2374

    Article  PubMed  Google Scholar 

  18. Demirel S, Johnson CA (2001) Incidence and prevalence of short wavelength automated perimetry deficits in ocular hypertensive patients. Am J Ophthalmol 131:709–715

    Article  PubMed  CAS  Google Scholar 

  19. Fortune B, Demirel S, Zhang X et al (2007) Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertension and early glaucoma. Invest Ophthalmol Vis Sci 48:1173–1180

    Article  PubMed  Google Scholar 

  20. Gallardo-Sanches LM, Aranguez-Cortés C (2000) Findings using flicker perimetry and TOP strategy in patients with ocular hypertension and normal subjects. 76° Encontro da Sociedad Espanola de Oftalmologica, Madrid

  21. Göbel K, Boyraz M, Schröder A, Erb C (2008) Comparison of frequency doubling technology perimetry and achromatic standard automated perimetry in patients with migraine without aura and controls. Klin Monatsbl Augenheilkd 225:718–722

    Article  PubMed  Google Scholar 

  22. González de la Rosa G (2003) Update on glaucoma diagnosis and follow-up. Arch Soc Esp Oftalmol 78:299–314

    Article  Google Scholar 

  23. Gonzalez-Hernandez M, Garcia-Feijoó J, Mendez MS, de la Rosa M (2004) Combined spatial, contrast and temporal functions perimetry in mild glaucoma and ocular hypertension. Eur J Ophthalmol 14:514–22

    PubMed  CAS  Google Scholar 

  24. Grippo TM, Hood DC, Kanadani FN et al (2006) A comparison between multifocal and conventional VEP latency changes secondary to glaucomatous damage. Invest Ophthalmol Vis Sci 47:5331–5336

    Article  PubMed  Google Scholar 

  25. Heijl A, Leske C, Bengtsson B et al (2002) Reduction of intraocular pressure and glaucoma progression. Arch Ophthalmol 120:1268–1279

    PubMed  Google Scholar 

  26. Haymes SA, Hutchison DM, McCormick TA et al (2005) Glaucomatous visual field progression with frequency-doubling technology and standard automated perimetry in a longitudinal prospective study. Invest Ophthalmol Vis Sci 46:547–554

    Article  PubMed  Google Scholar 

  27. Hermann MM, Theofylaktopoulos I, Bangard N et al (2004) Optic nerve head morphometry in healthy adults using confocal laser scanning tomography. Br J Ophthalmol 88:761–765

    Article  PubMed  CAS  Google Scholar 

  28. Hermann MM, Garway-Heath DF, Jonescu-Cuypers CP et al (2005) Interobserver variability in confocal optic nerve analysis (HRT). Int Ophthalmol 26:143–149

    Article  PubMed  Google Scholar 

  29. Hettesheimer H, Erb C, Schiefer U, Zrenner E (1999) Rauschfeldbefunde bei HIV+ Patienten. Ophthalmologe 96:437–442

    Article  PubMed  CAS  Google Scholar 

  30. Hong S, Na K, Kim CY, Seong GJ (2007) Learning effect of Humphrey matrix perimetry. Can J Ophthalmol 42:707–711

    Article  PubMed  Google Scholar 

  31. Horn FK, Wakili N, Jünemann AM, Korth M (2002) Testing for glaucoma with frequency-doubling perimetry in normals, ocular hypertensives, and glaucoma patients. Graefes Arch Clin Exp Ophthalmol 240:658–665

    Article  PubMed  Google Scholar 

  32. Horani A, Frenkel S, Yahalom C et al (2002) The learning effect in visual field testing of healthy subjects using frequency doubling technology. J Glaucoma 11:511–516

    Article  PubMed  Google Scholar 

  33. Iester M, Altieri M, Vittone P et al (2003) Detection of glaucomatous visual field defect by nonconventional perimetry. Am J Ophthalmol 135:35–39

    Article  PubMed  Google Scholar 

  34. Johnson CA, Samuels SJ (1997) Sreening for glaucomatous visual field loss with frequency-doubling perimetry. Invest Ophthalmol 38:413–425

    CAS  Google Scholar 

  35. Johnson CA, Adams AJ, Casson EJ, Brandt JD (1993) Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss. Arch Ophthalmol 111:645–650

    PubMed  CAS  Google Scholar 

  36. Johnson CA, Adams AJ, Casson EJ, Brandt JD (1993) Progression of early glaucomatous visual field loss as detected by blue-on-yellow and standard white-on-white automated perimetry. Arch Ophthalmol 111:651–656

    PubMed  CAS  Google Scholar 

  37. Kerrigan-Baumrind LA, Quigley HA, Pease ME et al (2000) Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 41:741–747

    PubMed  CAS  Google Scholar 

  38. Kelly DH (1966) Frequency doubling in visual responses. J Opt Soc Am 56:1628–1633

    Article  Google Scholar 

  39. Kelly DH (1981) Nonlinear visual responses to flickering sinusoidal gratings. J Opt Soc Am 71:1051–1055

    Article  PubMed  CAS  Google Scholar 

  40. Keltner JL, Johnson CA, Quigg JM et al (2000) Confirmation of visual field abnormalities in the ocular hypertension treatment study. Ocular Hypertension Treatment Study Group. Arch Ophthalmol 118:1187–1194

    PubMed  CAS  Google Scholar 

  41. Kogure S, Toda Y, Tsukahara S (2006) Prediction of future scotoma on conventional automated static perimetry using frequency doubling technology perimetry. Br J Ophthalmol 90:347–352

    Article  PubMed  CAS  Google Scholar 

  42. Kook MS, Yang SJ, Kim S et al (2004) Effect of cataract extraction on frequency doubling technology perimetry. Am J Ophthalmol 138:85–90

    Article  PubMed  Google Scholar 

  43. Kunimatsu S, Tomita G, Araie M et al (2005) Frequency doubling technology and scanning laser tomography in eyes with generalized enlargement of optic disc cupping. J Glaucoma 14:280–287

    Article  PubMed  Google Scholar 

  44. Kurtenbach A, Wagner U, Neu A et al (1994) Brightness matching and colour discrimination in young diabetics without retinopathy. Vision Res 34:115–122

    Article  PubMed  CAS  Google Scholar 

  45. Lachenmayr BJ, Kojetinsky S, Ostermaier N et al (1994) The different effects of aging on normal sensitivity in flicker and light-sense perimetry. Invest Ophthalmol Vis Sci 35:2741–2748

    PubMed  CAS  Google Scholar 

  46. Lee MJ, Kim DM, Jeoung JW et al (2007) Localized retinal nerve fiber layer defects and visual field abnormalities by Humphrey matrix frequency doubling technology perimetry. Am J Ophthalmol 143:1056–1058

    Article  PubMed  Google Scholar 

  47. Lobefalo L, Verrotti A, Mastropasqua L et al (1998) Blue-on-yellow and achromatic perimetry in diabetic children without retinopathy. Diabetes Care 21:2003–2006

    Article  PubMed  CAS  Google Scholar 

  48. Maddess T, Henry GH (1992) Performance of nonlinear visual units in ocular hypertension and glaucoma. Clin Vision Sci 7:371–383

    Google Scholar 

  49. Martin PR, White AJ, Goodchild AK et al (1997) Evidence that blue-on cells are part of the third geniculocortical pathway in primates. Eur J Neurosci 9:1536–1541

    Article  PubMed  CAS  Google Scholar 

  50. Martin L, Wanger P, Vancea L et al (2003) Concordance of high-pass resolution perimetry and frequency-doubling technology perimetry results in glaucoma: no support for selective ganglion cell damage. J Glaucoma 12:40–44

    Article  PubMed  Google Scholar 

  51. Marré M, Marré E (1986) Erworbene Störungen des Farbensehens. Thieme, Leipzig, S 15

  52. Matsumoto C, Uyama K, Okuyama R, Otori T (1993) Automated flicker perimetry using Octopus 1-2-3. In: Mills RP (ed) Perimetry update 1992/1993. Kugler, Amsterdam, pp 435–440

  53. Matsumoto C, Takada S, Okuyama S et al (2006) Automated flicker perimetry in glaucoma using Octopus 311: a comparative study with the Humphrey matrix. Acta Ophthalmol Scand 84:210–215

    Article  PubMed  Google Scholar 

  54. McKendrick AM, Cioffi GA, Johnson CA (2002) Short-wavelength sensitivity deficits in patients with migraine. Arch Ophthalmol 120:154–161

    PubMed  Google Scholar 

  55. Morgan JE, Uchida H, Caprioli J (2000) Retinal ganglion cell death in experimental glaucoma. Br J Ophthalmol 84:303–310

    Article  PubMed  CAS  Google Scholar 

  56. Mukai S, Tsukamoto H, Iwase A, Mishima HK (2005) Reliability of the first eye and second eye in frequency doubling technology perimetry. Jpn J Ophthalmol 49:417–419

    Article  PubMed  Google Scholar 

  57. Nesher R, Norman G, Stern Y et al (2004) Frequency doubling technology threshold testing in the pediatric age group. J Glaucoma 13:278–282

    Article  PubMed  Google Scholar 

  58. Nitta K, Saito Y, Kobayashi A, Sugiyama K (2006) Influence of clinical factors on blue-on-yellow perimetry for diabetic patients without retinopathy: comparison with white-on-white perimetry. Retina 26:797–802

    Article  PubMed  Google Scholar 

  59. Parravano M, Oddone F, Mineo D et al (2008) The role of Humphrey matrix testing in the early diagnosis of retinopathy in type 1 diabetes. Br J Ophthalmol 92:1656–1660

    Article  PubMed  CAS  Google Scholar 

  60. Parikh R, Naik M, Mathai A et al (2006) Role of frequency doubling technology perimetry in screening of diabetic retinopathy. Indian J Ophthalmol 54:17–22

    Article  PubMed  Google Scholar 

  61. Palmowski-Wolfe AM, Allgayer RJ, Vernaleken B et al (2006) Slow-stimulated multifocal ERG in high- and normal-tension glaucoma. Doc Ophthalmol 112:157–168

    Article  PubMed  Google Scholar 

  62. Plummer DJ, Sample PA, Arévalo JF et al (1996) Visual field loss in HIV-positive patients without infectious retinopathy. Am J Ophthalmol 122:542–549

    PubMed  CAS  Google Scholar 

  63. Quigley HA (1998) Identification of glaucoma-related visual field abnormality with the screening protocol of frequency doubling technology. Am J Ophthalmol 125:819–829

    Article  PubMed  CAS  Google Scholar 

  64. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267

    Article  PubMed  CAS  Google Scholar 

  65. Quigley HA, Addicks EM, Green WR (1982) Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema and toxic neuropathy. Arch Ophthalmol 100:135–146

    PubMed  CAS  Google Scholar 

  66. Realini T, Lai MQ, Barber L (2004) Impact of diabetes on glaucoma screening using frequency-doubling perimetry. Ophthalmology 111:2133–2136

    Article  PubMed  Google Scholar 

  67. Remky A, Arend O, Hendricks S (2000) Short-wavelength automated perimetry and capillary density in early diabetic maculopathy. Invest Ophthalmol Vis Sci 41:274–281

    PubMed  CAS  Google Scholar 

  68. Robin AL, Patel S, Friedman DS et al (2000) Algorithm for interpreting the results of the frequency doubling perimeter. Am J Ophthalmol 129:323–327

    Article  PubMed  Google Scholar 

  69. Sample PA, Weinreb RN (1990) Color perimetry for assessment of primary open-angle glaucoma. Invest Ophthalmol Vis Sci 31:1869–1875

    PubMed  CAS  Google Scholar 

  70. Sample PA, Plummer DJ, Mueller AJ et al (1999) Pattern of early visual field loss in HIV-infected patients. Arch Ophthalmol 117:755–760

    PubMed  CAS  Google Scholar 

  71. Schiefer U, Pätzold J, Dannheim F (2005) Konventionelle Perimetrie. Teil 1: Einführung – Grundbegriffe. Ophthalmologe 102:627–644

    Article  PubMed  CAS  Google Scholar 

  72. Schiefer U, Pätzold J, Dannheim F (2005) Konventionelle Perimetrie. Teil 2: Konfrontationsperimetrie – kinetische Perimetrie. Ophthalmologe 102:821–827

    Article  PubMed  CAS  Google Scholar 

  73. Schiefer U, Pätzold J, Wabbels B, Dannheim F (2006) Konventionelle Perimetrie. Teil 3: Statische Perimetrie: Raster – Strategien – Befunddarstellung. Ophthalmologe 103:149–163

    Article  PubMed  CAS  Google Scholar 

  74. Schiefer U, Pätzold J, Wabbels B, Dannheim F (2006) Konventionelle Perimetrie. Teil 4: Statische Perimetrie: Befundauswertung – Indizes – Verlaufskontrolle – Perimetrie im Kindesalter. Ophthalmologe 103:235–254

    Article  PubMed  CAS  Google Scholar 

  75. Schiller PH, Dolan RP (1994) Visual afteressects and the consequences of visual system lesions on their perception in the rhesus monkey. Vis Neurosci 11:643–665

    Article  PubMed  CAS  Google Scholar 

  76. Spry P, Johnson C, Mansberger SL, Cioffi GA (2005) Psychophysical investigation of ganglion loss in early glaucoma. J Glaucoma 14:11–19

    Article  PubMed  Google Scholar 

  77. Spry PGD, Hussin HM, Sparrow JM (2005) Clinical evaluation of frequency doubling technology perimetry using the Humphrey matrix 24-2 threshold strategy. Br J Ophthalmol 89:1031–1035

    Article  PubMed  CAS  Google Scholar 

  78. Stiles W (1939) The directional sensitivity of the retina and the spectral sensitivities of the rods and cones. Proc R Soc Lond B 127:64–105

    Article  Google Scholar 

  79. Tanna AP, Abraham C, Lai J, Shen J (2004) Impact of cataract on the results of frequency-doubling technology perimetry. Ophthalmology 111:1504–1507

    Article  PubMed  Google Scholar 

  80. Trible JR, Schultz RO, Robinson JC, Rothe TL (2000) Accuracy of glaucoma detection with frequency-doubling perimetry. Am J Ophthalmol 129:740–745

    Article  PubMed  CAS  Google Scholar 

  81. Ulrich T (2005) Farb- und Gesichtsfeldprüfung bei Kindern. Dissertation, Universität Hannover

  82. Wild JM (2001) Short wavelength automated perimetry. Acta Ophthalmol Scand 79:546–559

    Article  PubMed  CAS  Google Scholar 

  83. Xu X, Ichida JM, Allison JD et al (2001) A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). J Physiol 531:203–218

    Article  PubMed  CAS  Google Scholar 

  84. Yenice O, Temel A, Incili B, Tuncer N (2006) Short-wavelength automated perimetry in patients with migraine. Graefes Arch Clin Exp Ophthalmol 244:589–595

    Article  PubMed  Google Scholar 

  85. Yucel YH, Zhang Q, Gupta N et al (2000) Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol 118:378–384

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Erb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erb, C., Göbel, K. Funktionelle Glaukomdiagnostik. Ophthalmologe 106, 375–386 (2009). https://doi.org/10.1007/s00347-008-1817-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-008-1817-9

Schlüsselwörter

Keywords

Navigation