Skip to main content

Advertisement

Log in

Wide-field autofluorescence-guided TUR-B for the detection of bladder cancer: a pilot study

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this pilot study was to assess the feasibility and value of wide-field autofluorescence imaging (AFI) for the detection of bladder cancer during transurethral resection of the bladder (TUR-B).

Methods

For imaging, the D-Light/AF System (Karl Storz GmbH, Tuttlingen, Germany) and a customized band pass filter (≈ 480–780 nm) at the eyepiece of the endoscope were used. The excitation light wavelength was 440 nm. Representative spectral measurements of tissue autofluorescence (AF) were performed using a spectrometer attached behind the AF band pass filter in selected patients. During TUR-B, cystoscopy was performed in white light (WL) followed by wide-field AFI. Lesions were classified as suspicious or normal using either modality.

Results

Representative spectral measurements using excitation at a wavelength of 440 nm resulted in significantly lower fluorescence intensity of malignant versus non-malignant tissue. Overall, 56 lesions (30 cancerous and 26 non-malignant) in 25 patients were assessed and classified by wide-field AFI. Papillary tumors as well as flat lesions lacked the green fluorescence seen in normal urothelium, thus emerging as “brown-reddish” areas. When compared with histopathological findings, the pooled per-lesion sensitivity and specificity for AF were 96.7 and 53.8%, respectively. For WL these values were 86.7 and 69.2%, respectively.

Conclusion

Wide-field AFI imaging during TUR-B is simple and easy to use. Our preliminary data suggest that AFI has the potential to increase the detection rates of bladder tumors compared with WL without the need of intravesical instillation prior to the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30. https://doi.org/10.3322/caac.21166

    Article  PubMed  Google Scholar 

  2. Sylvester RJ, van der Meijden APM, Oosterlinck W et al (2006) Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 49:466–475. https://doi.org/10.1016/j.eururo.2005.12.031

    Article  PubMed  Google Scholar 

  3. Cina SJ, Epstein JI, Endrizzi JM et al (2001) Correlation of cystoscopic impression with histologic diagnosis of biopsy specimens of the bladder. Hum Pathol 32:630–637. https://doi.org/10.1053/hupa.2001.24999

    Article  CAS  PubMed  Google Scholar 

  4. Rink M, Babjuk M, Catto JWF et al (2013) Hexyl aminolevulinate-guided fluorescence cystoscopy in the diagnosis and follow-up of patients with non–muscle-invasive bladder cancer: a critical review of the current literature. Eur Urol 64:624–638. https://doi.org/10.1016/j.eururo.2013.07.007

    Article  PubMed  Google Scholar 

  5. Schweibold HE, Sivalingam S, May F, Hartung R (2006) The value of a second transurethral resection for T1 bladder cancer. BJU Int 97:1199–1201. https://doi.org/10.1111/j.1464-410X.2006.06144.x

    Article  Google Scholar 

  6. Lerner SP, Goh A (2015) Novel endoscopic diagnosis for bladder cancer. Cancer 121:169–178. https://doi.org/10.1002/cncr.28905

    Article  PubMed  Google Scholar 

  7. von Breitenbuch P, Jeiter T, Schreml S et al (2014) Autofluorescent imaging in patients with peritoneal carcinomatosis. Surg Innov 21:187–193. https://doi.org/10.1177/1553350613495114

    Article  Google Scholar 

  8. Li B-H (2005) Autofluorescence excitation–emission matrices for diagnosis of colonic cancer. World J Gastroenterol 11:3931. https://doi.org/10.3748/wjg.v11.i25.3931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He Q, Wang Q, Wu Q et al (2013) Value of autofluorescence imaging videobronchoscopy (AFI) in detecting lung cancers and precancerous lesions: a review. Respir Care. https://doi.org/10.4187/respcare.02524

    Google Scholar 

  10. Takeuchi Y, Inoue T, Hanaoka N et al (2010) Autofluorescence imaging with a transparent hood for detection of colorectal neoplasms: a prospective, randomized trial. Gastrointest Endosc 72:1006–1013. https://doi.org/10.1016/j.gie.2010.06.055

    Article  PubMed  Google Scholar 

  11. Zheng W, Lau W, Cheng C et al (2003) Optimal excitation–emission wavelengths for autofluorescence diagnosis of bladder tumors. Int J Cancer 104:477–481. https://doi.org/10.1002/ijc.10959

    Article  CAS  PubMed  Google Scholar 

  12. Millan-Rodriguez F, Chechile-Toniolo G, Salvador-Bayarri J et al (2000) Multivariate analysis of the prognostic factors of primary superficial bladder cancer. J Urol 163:73–78. https://doi.org/10.1016/S0022-5347(05)67975-X

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Wu J, Yang Y et al (2016) White light, autofluorescence and narrow-band imaging bronchoscopy for diagnosing airway pre-cancerous and early cancer lesions: a systematic review and meta-analysis. J Thorac Dis 8:3205–3216. https://doi.org/10.21037/jtd.2016.11.61

    Article  PubMed  PubMed Central  Google Scholar 

  14. Omar Aboumarzouk MBChBP, Valentine R, Buist R et al (2015) Laser-induced autofluorescence spectroscopy: can it be of importance in detection of bladder lesions? Photodiagn Photodyn Ther 12:76–83. https://doi.org/10.1016/j.pdpdt.2014.12.003

    Article  Google Scholar 

  15. Schäfauer C, Ettori D, Rouprêt M et al (2013) Detection of bladder urothelial carcinoma using in vivo noncontact, ultraviolet excited autofluorescence measurements converted into simple color coded images: a feasibility study. J Urol 190:271–277. https://doi.org/10.1016/j.juro.2013.01.100

    Article  PubMed  Google Scholar 

  16. Koenig F, McGovern FJ, Althausen AF et al (1996) Laser induced autofluorescence diagnosis of bladder cancer. J Urol. https://doi.org/10.1097/00005392-199611000-00012

    PubMed  Google Scholar 

  17. Anidjar M, Cussenot O, Blais J et al (1996) Argon laser induced autofluorescence may distinguish between normal and tumor human urothelial cells: a microspectrofluorimetric study. J Urol 155:1771–1774. https://doi.org/10.1016/S0022-5347(01)66195-0

    Article  CAS  PubMed  Google Scholar 

  18. Zaak D, Stepp H, Baumgartner R et al (2002) Ultraviolet-excited (308 nm) autofluorescence for bladder cancer detection. Urology 60:1029–1033

    Article  PubMed  Google Scholar 

  19. Mitchell D, Paniker L, Sanchez G et al (2010) Molecular response of nasal mucosa to therapeutic exposure to broad-band ultraviolet radiation. J Cell Mol Med 14:313–322. https://doi.org/10.1111/j.1582-4934.2008.00442.x

    Article  CAS  PubMed  Google Scholar 

  20. Anna B, Blazej Z, Jacqueline G et al (2007) Mechanism of UV-related carcinogenesis and its contribution to nevi/melanoma. Expert Rev Dermatol 2:451–469

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lerner SP, Goh AC, Tresser NJ, Shen SS (2008) Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and staging of bladder cancer. Urology 72:133–137. https://doi.org/10.1016/j.urology.2008.02.002

    Article  PubMed  Google Scholar 

  22. Chang TC, Liu J-J, Hsiao ST et al (2013) Interobserver agreement of confocal laser endomicroscopy for bladder cancer. J Endourol 27:598–603. https://doi.org/10.1089/end.2012.0549

    Article  PubMed  PubMed Central  Google Scholar 

  23. S3-Leitlinie Früherkennung, Diagnose, Therapie und Nachsorge des Harnblasenkarzinoms (2016) AWMF-Registernummer 032/038OL, November 2016

  24. Babjuk M, Böhle A, Burger M et al (2017) EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2016. Eur Urol 71:447–461. https://doi.org/10.1016/j.eururo.2016.05.041

    Article  PubMed  Google Scholar 

  25. Schmidbauer J, Remzi M, Klatte T et al (2009) Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces false-positive findings in the diagnosis of urothelial carcinoma of the bladder. Eur Urol 56:914–919. https://doi.org/10.1016/j.eururo.2009.07.042

    Article  PubMed  Google Scholar 

  26. Jocham D, Witjes F, Wagner S et al (2005) Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study. J Urol 174:862–866. https://doi.org/10.1097/01.ju.0000169257.19841.2a

    Article  PubMed  Google Scholar 

  27. Jichlinski P, Guillou L, Karlsen SJ et al (2003) Hexyl aminolevulinate fluorescence cystoscopy: a new diagnostic tool for photodiagnosis of superficial bladder cancer—a multicenter study. J Urol 170:226–229. https://doi.org/10.1097/01.ju.0000060782.52358.04

    Article  PubMed  Google Scholar 

  28. Dimitriadis N, Grychtol B, Theuring M et al (2017) Spectral and temporal multiplexing for multispectral fluorescence and reflectance imaging using two color sensors. Opt Express 25:12812–12829. https://doi.org/10.1364/OE.25.012812

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Goebel, Dr. Erhard, Dr. Nuhiji and Mrs. Schneider for technical and scientific support.

Author information

Authors and Affiliations

Authors

Contributions

MCK: Protocol/project development, Manuscript writing/editing, Data analysis, PH: Manuscript writing/editing, figure drafting, data analysis, AT: Measurements, critical revision and scientific input, CB: Protocol/project development, critical revision and scientific input, MR: Protocol/project development, critical revision and scientific input

Corresponding author

Correspondence to Maximilian C. Kriegmair.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical standards

Ethical approval no. MA 2014-546.

Funding source

Karl Sorz GmbH provided endoscopic equipment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kriegmair, M.C., Honeck, P., Theuring, M. et al. Wide-field autofluorescence-guided TUR-B for the detection of bladder cancer: a pilot study. World J Urol 36, 745–751 (2018). https://doi.org/10.1007/s00345-017-2147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-017-2147-9

Keywords

Navigation