Skip to main content
Log in

Insights into the Molecular Mechanism of Arsenic Phytoremediation

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Arsenic (As) is a widespread carcinogenic pollutant. Phytoremediation is the most suited technology for alleviating the As contamination of soil. In this review, we have discussed the uptake mechanism and the associated transporters for different As species. Glutathione, phytochelatins, metallothionins, and secondary metabolites play important role in As detoxification and enhancing tolerance. The roles of MAPK signaling and calcium signaling are highlighted in the perception of As stress along with phytohormones signaling in stress tolerance. Furthermore, transcription factors involved in regulation of gene expression under As stress are discussed. High-throughput sequencing has reduced the time duration and enhanced the knowledge regarding understanding the molecular mechanism of phytoremediation. The role of CRISPR/Cas9 and synthetic genes in context to phytoremediation is discussed. We have provided a holistic understanding of the present knowledge about phytoremediation in the context of mechanisms of the As uptake and tolerance. A complete understanding of the phytoremediation process is essential for As-risk mitigation and will help in augmenting its efficiency and true potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi N, Khan M, Amjad M, Hussain M (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15:59

    Article  PubMed Central  CAS  Google Scholar 

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abercrombie JM, Halfhill MD, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CN Jr (2008) Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol 8:87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali W, Isayenkov SV, Zhao F-J, Maathuis FJ (2009) Arsenite transport in plants. Cellular Mol Life Sci 66:2329–2339

    Article  CAS  Google Scholar 

  • Ali W, Isner JC, Isayenkov SV, Liu W, Zhao FJ, Maathuis FJ (2012) Heterologous expression of the yeast arsenite efflux system ACR1 improves Arabidopsis thaliana tolerance to arsenic stress. New Phytol 194:716–723

    Article  CAS  PubMed  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Shahzad B, Ashraf U, Fahad S, Hassan W, Jan S, Khan I, Saleem MF (2016) Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environ Sci Pollut Res 23:11864–11875

    Article  CAS  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basharat Z, Novo L, Yasmin A (2018) Genome editing weds CRISPR: what is in it for phytoremediation? Plants 7:51

    Article  CAS  PubMed Central  Google Scholar 

  • Bhattacharjee H, Rosen BP (2007) Arsenic metabolism in prokaryotic and eukaryotic microbes. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer, New York, pp 371–406

    Chapter  Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As (OH)3 and Sb (OH)3 across membranes. BMC Biol 6:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bleeker PM, Hakvoort HW, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929

    Article  CAS  PubMed  Google Scholar 

  • Braeuer S, Goessler W, Kameník J, Konvalinková T, Žigová A, Borovička J (2018) Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus). Food Chem 242:225–231

    Article  CAS  PubMed  Google Scholar 

  • Bun-Ya M, Nishimura M, Harashima S, Oshima Y (1991) The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cell Biol 11:3229–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burlo F, Guijarro I, Carbonell-Barrachina A, Valero D, Martinez-Sanchez F (1999) Arsenic species: effects on and accumulation by tomato plants. J Agric Food Chem 47:1247–1253

    Article  CAS  PubMed  Google Scholar 

  • Carbonell-Barrachina ÁA, Burló F, Valero D, López E, Martínez-Romero D, Martínez-Sánchez F (1999) Arsenic toxicity and accumulation in turnip as affected by arsenic chemical speciation. J Agric Food Chem 47:2288–2294

    Article  CAS  PubMed  Google Scholar 

  • Castrillo G, Sánchez-Bermejo E, de Lorenzo L, Crevillén P, Fraile-Escanciano A, Mouriz A, Catarecha P, Sobrino-Plata J, Olsson S, del Puerto YL (2013) WRKY6 Transcription Factor Restricts Arsenate Uptake and Transposon Activation in Arabidopsis. Plant Cell 25(8):2944–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) Mutant of the Arabidopsis phosphate transporter PHT1; 1 displays enhanced arsenic accumulation. Plant Cell 19:1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Han Y-H, Cao Y, Zhu Y-G, Rathinasabapathi B, Ma LQ (2017a) Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Front Plant Sci 8:268

    PubMed  PubMed Central  Google Scholar 

  • Chen Y, Sun S-K, Tang Z, Liu G, Moore KL, Maathuis FJ, Miller AJ, McGrath SP, Zhao F-J (2017b) The Nodulin 26-like intrinsic membrane protein OsNIP3; 2 is involved in arsenite uptake by lateral roots in rice. J Exp Bot 68(11):3007–3016

    Article  CAS  PubMed  Google Scholar 

  • Chung J-Y, Yu S-D, Hong Y-S (2014) Environmental source of arsenic exposure. J Prev Med Public Health 47:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Clemens S, Ma J (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512

    Article  CAS  PubMed  Google Scholar 

  • Cunningham S, Lee C (1995) Phytoremediation: plant-based remediation of contaminated soils and sediments. In: Skipper HD, Turco RF (eds) Bioremediation: science and applications special publication 43. Soil Science Society of America, Madison, WI, pp 145–156

    Google Scholar 

  • Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Davies PJ (ed) The plant hormones: their nature, occurrence, and functions. Springer, New York, pp 1–15

    Chapter  Google Scholar 

  • De Koe T, Jaques N (1993) Arsenate tolerance in Agrostis castellana and Agrostis delicatula. Plant Soil 151:185–191

    Article  Google Scholar 

  • De Vos CR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Razo LM, Quintanilla-Vega B, Brambila-Colombres E, Calderón-Aranda ES, Manno M, Albores A (2001) Stress proteins induced by arsenic. Toxicol Appl Pharmacol 177:132–148

    Article  PubMed  CAS  Google Scholar 

  • Dı́az J, Bernal A, Pomar F, Merino F (2001) Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci 161:179–188

    Article  Google Scholar 

  • DiTusa SF, Fontenot EB, Wallace RW, Silvers MA, Steele TN, Elnagar AH, Dearman KM, Smith AP (2016) A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. New Phytol 209:762–772

    Article  CAS  PubMed  Google Scholar 

  • Duan G-L, Hu Y, Schneider S, McDermott J, Chen J, Sauer N, Rosen BP, Daus B, Liu Z, Zhu Y-G (2016) Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nat Plants 2:15202

    Article  CAS  PubMed  Google Scholar 

  • Francesconi K, Visoottiviseth P, Sridokchan W, Goessler W (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci Total Environ 284:27–35

    Article  CAS  PubMed  Google Scholar 

  • Fu X-Y, Zhao W, Xiong A-S, Tian Y-S, Zhu B, Peng R-H, Yao Q-H (2013) Phytoremediation of triphenylmethane dyes by overexpressing a Citrobacter sp. triphenylmethane reductase in transgenic Arabidopsis. Appl Microbiol Biotechnol 97:1799–1806

    Article  CAS  PubMed  Google Scholar 

  • Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Singh K, Shaw AK, Azahar I, Adhikari S, Ghosh U, Basu U, Roy S, Saha S, Sherpa AR (2017) Insights into the miRNA-mediated response of maize leaf to arsenate stress. Environ Exp Bot 137:96–109

    Article  CAS  Google Scholar 

  • Goupil P, Souguir D, Ferjani E, Faure O, Hitmi A, Ledoigt G (2009) Expression of stress-related genes in tomato plants exposed to arsenic and chromium in nutrient solution. J Plant Physiol 166:1446–1452

    Article  CAS  PubMed  Google Scholar 

  • Grill E, Löffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci 86:6838–6842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta M, Sharma P, Sarin NB, Sinha AK (2009) Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere 74:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Han Y-H, Yang G-M, Fu J-W, Guan D-X, Chen Y, Ma LQ (2016) Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: impact of arsenic and phosphate rock. Chemosphere 149:366–372

    Article  CAS  PubMed  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Vooijs R, Ten Bookum W, Schat H, Meharg AA (2001) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hakeem KR, Öztürk M, Fujita M (2015) Arsenic toxicity in plants and possible remediation. Soil Remediat Plants. https://doi.org/10.1016/B978-0-12-799937-1.00016-4

    Article  Google Scholar 

  • He Z, Yan H, Chen Y, Shen H, Xu W, Zhang H, Shi L, Zhu YG, Ma M (2016) An aquaporin Pv TIP 4; 1 from Pteris vittata may mediate arsenite uptake. New Phytol 209:746–761

    Article  CAS  PubMed  Google Scholar 

  • Hettick BE, Cañas-Carrell JE, French AD, Klein DM (2015) Arsenic: a review of the element’s toxicity, plant interactions, and potential methods of remediation. J Agric Food Chem 63:7097–7107

    Article  CAS  PubMed  Google Scholar 

  • Huang T-L, Nguyen QTT, Fu S-F, Lin C-Y, Chen Y-C, Huang H-J (2012) Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Mol Biol 80:587–608

    Article  CAS  PubMed  Google Scholar 

  • Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22(6):2045–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iriel A, Dundas G, Cirelli AF, Lagorio MG (2015) Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants. Chemosphere 119:697–703

    Article  CAS  PubMed  Google Scholar 

  • Isayenkov SV, Maathuis FJ (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7; 1 is a pathway for arsenite uptake. Febs Lett 582:1625–1628

    Article  CAS  PubMed  Google Scholar 

  • Izbiańska K, Arasimowicz-Jelonek M, Deckert J (2014) Phenylpropanoid pathway metabolites promote tolerance response of lupine roots to lead stress. Ecotoxicol Environ Saf 110:61–67

    Article  PubMed  CAS  Google Scholar 

  • Kamiya T, Tanaka M, Mitani N, Ma JF, Maeshima M, Fujiwara T (2008) NIP1; 1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 284(4):2114–2120

    Article  PubMed  CAS  Google Scholar 

  • Kamiya T, Islam R, Duan G, Uraguchi S, Fujiwara T (2013) Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Sci Plant Nutr 59:580–590

    Article  CAS  Google Scholar 

  • Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    Article  CAS  PubMed  Google Scholar 

  • King DJ, Doronila AI, Feenstra C, Baker AJ, Woodrow IE (2008) Phytostabilisation of arsenical gold mine tailings using four Eucalyptus species: growth, arsenic uptake and availability after five years. Sci Total Environ 406:35–42

    Article  CAS  PubMed  Google Scholar 

  • Kłodawska K, Bojko M, Latowski D (2018) Transcriptomics of arsenic tolerance in plants. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Mechanisms of arsenic toxicity and tolerance in plants. Springer, New York, pp 317–339

    Chapter  Google Scholar 

  • Kostal J, Yang R, Wu CH, Mulchandani A, Chen W (2004) Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol 70:4582–4587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostecka-Gugała A, Latowski D (2018) Arsenic-induced oxidative stress in plants. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Mechanisms of arsenic toxicity and tolerance in plants. Springer, New York, pp 79–104

    Chapter  Google Scholar 

  • Kovacik J, Klejdus B, Hedbavny J, Zon J (2010) Copper uptake is differentially modulated by phenylalanine ammonia-lyase inhibition in diploid and tetraploid chamomile. J Agric Food Chem 58:10270–10276

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy A, Rathinasabapathi B (2013) Auxin and its transport play a role in plant tolerance to arsenite-induced oxidative stress in Arabidopsis thaliana. Plant Cell Environ 36:1838–1849

    Article  CAS  PubMed  Google Scholar 

  • Kunjapur AM, Pfingstag P, Thompson NC (2018) Gene synthesis allows biologists to source genes from farther away in the tree of life. Nat Commun 9:4425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee K-W, Cha J-Y, Kim K-H, Kim Y-G, Lee B-H, Lee S-H (2012) Overexpression of alfalfa mitochondrial HSP23 in prokaryotic and eukaryotic model systems confers enhanced tolerance to salinity and arsenic stress. Biotechnol Lett 34:167–174

    Article  CAS  PubMed  Google Scholar 

  • Li T (2014) Pore selectivity and gating of Arabidopsis nodulin 26 intrinsic proteins and roles in boric acid transport in reproductive growth. PhD dissertation, University of Tennessee

  • Li W-X, Chen T-B, Huang Z-C, Lei M, Liao X-Y (2006) Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere 62:803–809

    Article  CAS  PubMed  Google Scholar 

  • Li R-Y, Ago Y, Liu W-J, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao F-J (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linacre NA, Whiting SN, Angle JS (2005) The impact of uncertainty on phytoremediation project costs International. J Phytoremediat 7:259–269

    Article  Google Scholar 

  • Liu Q, Zhang H (2012) Molecular identification and analysis of arsenite stress-responsive miRNAs in rice. J Agric Food Chem 60:6524–6536

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Mi Y, Zhang J, Li Q, Chen L (2016) Illumina-based transcriptomic profiling of Panax notoginseng in response to arsenic stress. Bot Stud 57:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu X-Y, Su Y-H, McGrath SP, Zhao F-J (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci 105:9931–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Macnair MR, Cumbes Q (1987) Evidence that arsenic tolerance in Holcus lanatus L. is caused by an altered phosphate uptake system. New Phytol 107:387–394

    Article  CAS  PubMed  Google Scholar 

  • Macnair MR, Tilstone GH, Smith SE (1999) The genetics of metal tolerance and accumulation in higher plants Phytoremediation of contaminated soil and water. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press LLC, pp 235–250

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1991) The mechanisms of arsenate tolerance in Deschampsia cespitosa (L.) Beauv. and Agrostis capillaris L. New Phytol 119:291–297

    Article  CAS  PubMed  Google Scholar 

  • Meharg A, Macnair M (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15(4):523–530

    CAS  Google Scholar 

  • Mimura T (1999) Regulation of phosphate transport and homeostasis in plant cells. Int Rev Cytol 191:149–200

    Article  CAS  Google Scholar 

  • Mishra S, Alfeld M, Sobotka R, Andresen E, Falkenberg G, Küpper H (2016) Analysis of sublethal arsenic toxicity to Ceratophyllum demersum: subcellular distribution of arsenic and inhibition of chlorophyll biosynthesis. J Exp Bot 67:4639–4646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore JW (1991) Arsenic. In: Moore JW (ed) Inorganic contaminants of surface water. Springer, New Yrok, pp 20–33

    Chapter  Google Scholar 

  • Moore KL, Schröder M, Wu Z, Martin BG, Hawes CR, McGrath SP, Hawkesford MJ, Ma JF, Zhao F-J, Grovenor CR (2011) High-resolution secondary ion mass spectrometry reveals the contrasting subcellular distribution of arsenic and silicon in rice roots. Plant Physiol 156:913–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namdjoyan S, Kermanian H (2016) Phytochelatin synthesis and responses of antioxidants during arsenic stress in Nasturtium officinale. Russ J Plant Physiol 63:739–748

    Article  CAS  Google Scholar 

  • Nussaume L, Kanno S, Javot H, Marin E, Nakanishi TM, Thibaud M-C (2011) Phosphate import in plants: focus on the PHT1 transporters. Front Plant Sci 2:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Paliouris G, Hutchinson TC (1991) Arsenic, cobalt and nickel tolerances in two populations of Silene vulgaris (Moench) Garcke from Ontario. Can New Phytol 117:449–459

    Article  CAS  PubMed  Google Scholar 

  • Price AH, Taylor A, Ripley SJ, Griffiths A, Trewavas AJ, Knight MR (1994) Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 6:1301–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raab A, Schat H, Meharg AA, Feldmann J (2005) Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic–phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168:551–558

    Article  CAS  PubMed  Google Scholar 

  • Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203

    Article  CAS  Google Scholar 

  • Rai A, Tripathi P, Dwivedi S, Dubey S, Shri M, Kumar S, Tripathi PK, Dave R, Kumar A, Singh R (2011) Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system. Chemosphere 82:986–995

    Article  CAS  PubMed  Google Scholar 

  • Rao KP, Vani G, Kumar K, Wankhede DP, Misra M, Gupta M, Sinha AK (2011) Arsenic stress activates MAP kinase in rice roots and leaves. Arch Biochem Biophys 506:73–82

    Article  CAS  PubMed  Google Scholar 

  • Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37

    Article  CAS  PubMed  Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis, vol 28. Wiley, New York

    Book  Google Scholar 

  • Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Rivero RM, Ruiz JM, Garcıa PC, Lopez-Lefebre LR, Sánchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315–321

    Article  CAS  PubMed  Google Scholar 

  • Rocovich SE, West DA (1975) Arsenic tolerance in a population of the grass Andropogon scoparius Michx. Science 188:263–264

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137:103–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen BP (1999) Families of arsenic transporters. Trends Microbiol 7:207–212

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich I (1996) Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Sakihama Y, Cohen MF, Grace SC, Yamasaki H (2002) Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177:67–80

    Article  CAS  PubMed  Google Scholar 

  • Salido AL, Hasty KL, Lim J-M, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int J Phytoremediat 5:89–103

    Article  CAS  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J-L (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686

    Article  CAS  PubMed  Google Scholar 

  • Shelmerdine PA, Black CR, McGrath SP, Young SD (2009) Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic. Environ Pollut 157:1589–1596

    Article  CAS  PubMed  Google Scholar 

  • Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1; 1 and Pht1; 4 play a major role in phosphate acquisition from both low-and high-phosphate environments. Plant J 39:629–642

    Article  CAS  PubMed  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110

    Article  CAS  PubMed  Google Scholar 

  • Shri M, Dave R, Diwedi S, Shukla D, Kesari R, Tripathi RD, Trivedi PK, Chakrabarty D (2014) Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain. Sci Rep 4:5784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla T, Khare R, Kumar S, Lakhwani D, Sharma D, Asif MH, Trivedi PK (2018) Differential transcriptome modulation leads to variation in arsenic stress response in Arabidopsis thaliana accessions. J Hazard Mater 351:1–10

    Article  CAS  PubMed  Google Scholar 

  • Sima G, Fatemeh Z, Vahid N (2012) Determination of peroxidase activity, total phenolic and flavonoid compounds due to lead toxicity in Medicago sativa L. Adv Environ Biol 6:2357–2365

    Google Scholar 

  • Song W-Y, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107:21187–21192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song W-Y, Yamaki T, Yamaji N, Ko D, Jung K-H, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci 111:15699–15704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’souza S (2012) Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. J Exp Bot 64:303–315

    Article  PubMed  CAS  Google Scholar 

  • Steffens J (1990) The heavy metal-binding peptides of plants. Annu Rev Plant Biol 41:553–575

    Article  CAS  Google Scholar 

  • Stoeva N, Berova M, Zlatev Z (2005) Effect of arsenic on some physiological parameters in bean plants. Biol Plant 49:293–296

    Article  CAS  Google Scholar 

  • Sundaram S, Wu S, Ma LQ, Rathinasabapathi B (2009) Expression of a Pteris vittata glutaredoxin PvGRX5 in transgenic Arabidopsis thaliana increases plant arsenic tolerance and decreases arsenic accumulation in the leaves. Plant Cell Environ 32:851–858

    Article  CAS  PubMed  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad M (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    Article  CAS  Google Scholar 

  • Talukdar D (2013) Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L. seedlings and its amelioration by exogenous nitric oxide. Physiol Mol Biol Plants 19:69–79

    Article  CAS  PubMed  Google Scholar 

  • Talukder AH, Mahmud S, Shaon SM, Tanvir RZ, Saha MK, Imran AA, Islam MS (2015) Arsenic detoxification by phytoremediation. Int J Basic Clin Pharmacol 4:822–846

    Article  Google Scholar 

  • Thakur S, Choudhary S, Bhardwaj P (2019) Comparative transcriptome profiling under cadmium stress reveals the uptake and tolerance mechanism in Brassica juncea. J Plant Growth Regul. https://doi.org/10.1007/s00344-019-09919-8

    Article  Google Scholar 

  • Tu S, Ma LQ, Fayiga AO, Zillioux EJ (2004) Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L. Int J Phytoremediat 6:35–47

    Article  CAS  Google Scholar 

  • Ülker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  CAS  Google Scholar 

  • Ullrich-Eberius C, Sanz A, Novacky A (1989) Evaluation of arsenate-and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1. J Exp Bot 40:119–128

    Article  CAS  Google Scholar 

  • Vázquez S, Agha R, Granado A, Sarro M, Esteban E, Penalosa J, Carpena R (2006) Use of white lupin plant for phytostabilization of Cd and As polluted acid soil Water. Air Soil Pollut 177:349–365

    Article  CAS  Google Scholar 

  • Wang J, Zhao F-J, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Xu Q, Kong Y-H, Chen Y, Duan J-Y, Wu W-H, Chen Y-F (2014) Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTERA1; 1 expression in response to phosphate starvation. Plant Physiol 164(1):2020–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Dai W, Yan H, Li S, Shen H, Chen Y, Xu H, Sun Y, He Z, Ma M (2015) Arabidopsis NIP3; 1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8:722–733

    Article  CAS  PubMed  Google Scholar 

  • Yanitch A, Brereton NJ, Gonzalez E, Labrecque M, Joly S, Pitre FE (2017) Transcriptomic response of purple willow (Salix purpurea) to arsenic stress. Front Plant Sci 8:1115

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu LJ, Luo YF, Liao B, Xie LJ, Chen L, Xiao S, Li JT, Hu SN, Shu WS (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195:97–112

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Ma J, Meharg A, McGrath S (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Council for Scientific and Industrial Research (CSIR), India under Grant No. 38 (1403)/15/EMR-II. ST and SC gratefully acknowledge the fellowship received from the ICMR toward Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Bhardwaj.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, S., Choudhary, S., Majeed, A. et al. Insights into the Molecular Mechanism of Arsenic Phytoremediation. J Plant Growth Regul 39, 532–543 (2020). https://doi.org/10.1007/s00344-019-10019-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-10019-w

Keywords

Navigation