Skip to main content
Log in

Interactions of Brassinosteroids with Major Phytohormones: Antagonistic Effects

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Brassinosteroids (BRs) constitute an important class of signaling molecules capable of executing diverse functions ranging from plant growth, development, reproduction, and even stress tolerance. The recent literature on BRs has discussed these wide ranging roles and potentials of BRs. However, the maintenance of metabolic equivalents in the global context of other phytohormones is largely unknown. In this article, we have highlighted such interactive antagonistic cross-talks between BRs and other phytohormones which are crucial in growth regulation and abiotic stress tolerance. Such competitive interactions with BRs have been observed in the cases of abscisic acid, ethylene, auxin, gibberellins, salicylic acid, and even polyamines during physiological growth or abiotic stresses. The discussion largely presents the unique characters of plant molecular physiology and development regarding BR- and other phytohormone-mediated interactive antagonism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahammed GJ, Li X, Xia XJ, Shi K, Zhou YH, Yu JQ (2015) Enhanced photosynthetic capacity and antioxidant potential mediate brassinosteriod-induced phenanthrene stress tolerance in tomato. Environ Pollut 201:58–66

    CAS  PubMed  Google Scholar 

  • Anuradha S, Rao SSR (2007a) Effect of 24-epibrassinolide on the growth and antioxidant enzyme activities in radish seedlings under lead toxicity. Indian J Plant Physiol 12:396–400

    CAS  Google Scholar 

  • Anuradha S, Rao SSR (2007b) The effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress. Plant Soil Environ 53:465–472

    CAS  Google Scholar 

  • Arora P, Bhardwaj R, Kanwar MK (2010a) 24-Epibrassinolide induced antioxidative defense system of Brassica juncea L. under Zn metal stress. Physiol Mol Biol Plant 16:285–293

    CAS  Google Scholar 

  • Arora P, Bhardwaj R, Kanwar MK (2010b) 24-Epibrassinoliide regulated diminution of Cr metal toxicity in Brassica juncea L. plants. Braz J Plant Physiol 22:159–165

    Google Scholar 

  • Bajguz A (2007) Metabolism of brassinosteroids in plants. Plant Physiol Biochem 45:95–107

    CAS  PubMed  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    CAS  PubMed  Google Scholar 

  • Banerjee A, Roychoudhury A (2018) Abiotic stress, generation of reactive oxygen species, and their consequences: an overview. In: Singh VP, Singh S, Tripathi D, Mohan Prasad S, Chauhan DK (eds) Revisiting the role of reactive oxygen species (ROS) in plants: ROS Boon or bane for plants? Wiley, New York, pp 23–50

    Google Scholar 

  • Banerjee A, Wani SH, Roychoudhury A (2017) Epigenetic control of plant cold responses. Front Plant Sci 8:1643

    PubMed  PubMed Central  Google Scholar 

  • Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140:1384–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cano-Delgado A, Yin Y, Yu C, Vafeados D, Mora-Garcia S, Cheng JC, Nam KH, Li J, Chory J (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–5351

    CAS  PubMed  Google Scholar 

  • Chaiwanon J, Wang ZY (2015) Spatiotemporal brassinosteroids signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Curr Biol 25:1031–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Yin Y (2017) WRKY transcription factors are involved in brassinosteroid signaling and mediate the crosstalk between plant growth and drought tolerance. Plant Signal Behav 12:e1365212

    PubMed  PubMed Central  Google Scholar 

  • Choudhary SP, Bhardwaj R, Gupta BD, Dutt P, Gupta RK, Biondid S et al (2010) Epibrassinolide induces changes in indole-3-acetic acid, abscisic acid and polyamine concentrations and enhances antioxidant potential of radish seedlings under copper stress. Physiol Plant 140:280–296

    CAS  PubMed  Google Scholar 

  • Choudhary SP, Oral HV, Bhardwaj R, Yu J, Tran LP (2012) Interaction of brassinosteroids and polyamine enhances copper stress tolerance in Raphanus sativus. J Exp Bot 63:5659–5670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung Y, Choe S (2013) The regulation of brassinosteroid biosynthesis in Arabidopsis. Crit Rev Plant Sci 32:396–410

    Google Scholar 

  • Clouse SD (2015) A history of brassinosteroid research from 1970 through 2005: thirty-five years of phytochemistry, physiology, genes, and mutants. J Plant Growth Regul 34:828–844

    CAS  Google Scholar 

  • De Vleesschauwer D, Van Buyten E, Satoh K, Balidion J, Mauleon R, Choi IR et al (2012) Brassinosteroids antagonize gibberellin–and salicylate-mediated root immunity in rice. Plant Physiol 158:1833–1846

    PubMed  PubMed Central  Google Scholar 

  • Deslauriers SD, Larsen PB (2010) FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in Arabidopsis hypocotyls. Mol Plant 3:626–640

    CAS  PubMed  Google Scholar 

  • Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. Nat Biotechnol 26:131–136

    CAS  Google Scholar 

  • Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151

    PubMed  PubMed Central  Google Scholar 

  • Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci 4:397

    PubMed  PubMed Central  Google Scholar 

  • Duan F, Ding J, Lee D, Lu X, Feng Y, Song W (2017) Overexpression of SoCYP85A1, a spinach cytochrome p450 gene in transgenic tobacco enhances root development and drought stress tolerance. Front Plant Sci 8:1909

    PubMed  PubMed Central  Google Scholar 

  • Fu FQ, Mao WH, Shi K, Zhou YH, Asami T, Yu JQ (2008) A role of brassinosteroids in early fruit development in cucumber. J Exp Bot 59:2299–2308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164

    CAS  PubMed  Google Scholar 

  • Fujioka S, Noguchi T, Yokota T, Takatsuto S, Yoshida S (1998) Brassinosteroids in Arabidopsis thaliana. Phytochemistry 48:595–599

    CAS  PubMed  Google Scholar 

  • Grauwe LD, Vandenbussche F, Tietz O, Palme K, Straeten DVD (2005) Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl. Plant Cell Physiol 46:827–836

    PubMed  Google Scholar 

  • Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JDJ et al (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    CAS  Google Scholar 

  • Gruszka D, Janeczko A, Dziurka M, Pociecha E, Oklestkova J, Szarejko I (2016) Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reaction to drought stress. Front Plant Sci 7:1824

    PubMed  PubMed Central  Google Scholar 

  • Gudesblat GE, Russinova E (2011) Plants grow on brassinosteroids. Curr Opin Plant Biol 14:530–537

    CAS  PubMed  Google Scholar 

  • Guo D, Gao X, Li H, Zhang T, Chen G, Huang P et al (2008) EGY1 plays a role in regulation of endodermal plastid size and number that are involved in ethylene-dependent gravitropism of light-grown Arabidopsis hypocotyls. Plant Mol Biol 66:345–360

    CAS  PubMed  Google Scholar 

  • Guo H, Li L, Ye H, Yu X, Algreen A, Yin Y (2009) Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci USA 106:7648–7653

    CAS  PubMed  Google Scholar 

  • Guo H, Li L, Aluru M, Aluru S, Yin Y (2013) Mechanisms and networks for brassinosteroids regulated gene expression. Curr Opin Plant Biol 16:545–553

    CAS  PubMed  Google Scholar 

  • Hacham Y, Holland N, Butterfield C, Ubeda-Tomas S, Bennett MJ et al (2011) Brassinosteroid perception in the epidermis controls root meristem size. Development 138:839–848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen M, Chae HS, Kieber JJ (2009) Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J 57:606–614

    CAS  PubMed  Google Scholar 

  • Haubrick LL, Torsethaugen G, Assmann SM (2006) Effect of brassinolide, alone and in concert with abscisic acid, on control of stomatal aperture and potassium currents of Vicia faba guard cell protoplasts. Physiol Plant 128:134–143

    CAS  Google Scholar 

  • Hu Y, Yu D (2014) BRASSINOSTEROID INSENSITIVE 2 interacts with ABSCISIC ACID INSENSITIVE 5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. Plant Cell 26:4394–4408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu M, Luo M, Xiao Y, Li X, Tan K, Hou L et al (2011) Brassinosteroids and auxin down-regulate DELLA genes in fiber initiation and elongation of cotton. Agric Sci China 10:1168–1176

    CAS  Google Scholar 

  • Janeczko A, Hura K, Skoczowski A, Idzik I, Biesaga-Koscielniak J, Niemczyk E (2009) Temperature-dependent impact of 24-epibrassinolide on the fatty acid composition and sugar content in winter oilseed rape callus. Acta Physiol Plant 31:71–79

    CAS  Google Scholar 

  • Janeczko A, Oklestkova J, Pociecha E, Koscielniak J, Mirek M (2011) Physiological effects and transport of 24-epibrassinolide in heat-stressed barley. Acta Physiol Plant 33:1249–1259

    CAS  Google Scholar 

  • Janeczko A, Gruszka D, Pociecha E, Dziurka M, Filek M, Jurczyk B, Kalaji HM, Kocurek M, Waligórski P (2016) Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis. Plant Physiol Biochem 99:126–141

    CAS  PubMed  Google Scholar 

  • Karlova R, Boeren S, Russinova E, Aker J, Vervoort J, de Vries S (2006) The Arabidopsis somatic embryogenesis receptor-like kinase1 protein complex includes brassinosteroid-insensitive1. Plant Cell 18:626–638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TW, Michniewicz M, Bergmann DC, Wang ZY (2012) Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482:419–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Kumar M, Kim SR, Ryu H, Cho YG (2013) Insights into genomics of salt stress response in rice. Rice 6:27

    PubMed  PubMed Central  Google Scholar 

  • Kutschera U, Wang ZY (2012) Brassinosteroid action in flowering plants: a Darwinian perspective. J Exp Bot 63:3511–3522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    CAS  PubMed  Google Scholar 

  • Li ZY, Xu ZS, He GY, Yang GX, Chen M, Li LC et al (2012a) A mutation in Arabidopsis BSK5 encoding a brassinosteroid-signaling kinase protein affects responses to salinity and abscisic acid. Biochem Biophys Res Commun 4:522–527

    Google Scholar 

  • Li QF, Wang C, Jiang L, Li S, Sun SS, He JX (2012b) An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci Signal 5:ra72

    PubMed  Google Scholar 

  • Li J, Besseau S, Toronen P, Sipari N, Kollist H et al (2013) Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. New Phytol 22:457–472

    Google Scholar 

  • Liu JH, Moriguchi T (2007) Changes in free polyamine titers and expression of polyamine biosynthetic genes during growth of peach in vitro callus. Plant Cell Rep 26:125–131

    CAS  PubMed  Google Scholar 

  • Mazorra LM, Oliveira MG, Souza AF, da Silva WB, dos Santos GM et al (2013) Involvement of brassinosteroids and ethylene in the control of mitochondrial electron transport chain in postharvest papaya fruit. Theor Exp Plant Physiol 25:223–230

    CAS  Google Scholar 

  • Mouchel CF, Osmont KS, Hardtke CS (2006) BRX mediates feedback between brassinosteroids and auxin signalling in root growth. Nature 443:458–461

    CAS  PubMed  Google Scholar 

  • Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195

    CAS  PubMed  Google Scholar 

  • Nakamura A, Tochio N, Fujioka S, Ito S, Kigawa T (2017) Molecular actions of two synthetic brassinosteroids, iso-carbaBL and 6-deoxoBL, which cause altered physiological activities between Arabidopsis and rice. PLoS ONE 12:e0174015

    PubMed  PubMed Central  Google Scholar 

  • Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212

    CAS  PubMed  Google Scholar 

  • Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of brassinosteroids and auxin signaling in Arabidopsis. PLoS Biol 2:e258

    PubMed  PubMed Central  Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely non overlapping transcriptional responses. Cell 126:467–475

    CAS  Google Scholar 

  • Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H et al (1999) Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol 121:743–752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poppenberger B, Rozhon W, Khan M, Husar S et al (2011) CESTA, a positive regulator of brassinosteroids biosynthesis. EMBO J 30:1149–1161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao X, Dixon RA (2017) Brassinosteroid mediated cell wall remodeling in grasses under abiotic stress. Front Plant Sci 8:806

    PubMed  PubMed Central  Google Scholar 

  • Ross JJ (2016) Interactions between brassinosteroids and gibberellins: synthesis or signaling? Plant Cell 28:829–832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roychoudhury A, Banerjee A (2016) Endogenous glycine betaine accumulation mediates abiotic stress tolerance in plants. Trop Plant Res 3:105–111

    Google Scholar 

  • Roychoudhury A, Banerjee A (2017) Abscisic acid signaling and involvement of mitogen activated protein kinases and calcium-dependent protein kinases during plant abiotic stress. In: Pandey G (ed) Mechanism of plant hormone signaling under stress, vol 1. Wiley, New York, pp 197–241

    Google Scholar 

  • Roychoudhury A, Banerjee A, Lahiri V (2015) Metabolic and molecular-genetic regulation of proline signaling and its cross-talk with major effectors mediates abiotic stress tolerance in plants. Turk J Bot 39:887–910

    CAS  Google Scholar 

  • Roychoudhury A, Ghosh S, Paul S, Mazumdar S, Das G, Das S (2016) Pre-treatment of seeds with salicylic acid attenuates cadmium chloride-induced oxidative damages in the seedlings of mungbean (Vigna radiata L. Wilczek). Acta Physiol Plant 38:11

    Google Scholar 

  • Saini S, Sharma I, Pati PK (2015) Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Front Plant Sci 6:950

    PubMed  PubMed Central  Google Scholar 

  • Salopek-Sondi B, Pavlovic I, Smolko A, Samec D (2017) Auxin as a mediator of abiotic stress responses. In: Pandey GK (ed) Mechanism of plant hormone signaling under stress. Wiley, New York

    Google Scholar 

  • Schmidt R, Schippers JH, Mieulet D, Obata T, Fernie AR, Guiderdoni E et al (2013) MULTIPASS, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways. Plant J 76:258–273

    CAS  PubMed  Google Scholar 

  • Sharma I, Bhardwaj R, Pati PK (2015) Exogenous application of 28-homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite rice variety Pusa Basmati-1. J Plant Growth Regul 34:509–518

    CAS  Google Scholar 

  • Sharma I, Kaur N, Pati PK (2017) Brassinosteroids: A promising option in deciphering remedial strategies for abiotic stress tolerance in rice. Front Plant Sci 8:2151

    PubMed  PubMed Central  Google Scholar 

  • Sun Y, Fan XY, Cao DM, Tang W et al (2010) Integration of brassinosteroids signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Chen D, Li X, Qiao S, Shi C, Li C et al (2015) Brassinosteroid signaling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev Cell 34:220–228

    CAS  PubMed  Google Scholar 

  • Symons GM, Ross JJ, Jager CE, Reid JB (2008) Brassinosteroid transport. J Exp Bot 59:17–24

    CAS  PubMed  Google Scholar 

  • Takahashi T, Kakehi JI (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Ann Bot 105:1–6

    CAS  PubMed  Google Scholar 

  • Takatsuto S (1994) Brassinosteroids: distribution in plants, bioassays and microanalysts by gas chromatography–mass spectrometry. J Chromatogr A 658:3–15

    CAS  Google Scholar 

  • Tang J, Han Z, Chai J (2016) Q&A: what are brassinosteroids and how do they act in plants? BMC Biol 14:113

    PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Prasad V, Prasad M (2017) A functional genomic perspective on drought signalling and its crosstalk with phytohormone-mediated signalling pathways in plants. Curr Genom 18:469–482

    CAS  Google Scholar 

  • Tong H, Xiao Y, Liu D, Gao S, Liu L, Yin Y et al (2014) Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26:4376–4393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenbussche F, Callebert P, Zadnikova P, Benkova E, Van Der Straeten D (2013) Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components. Am J Bot 100:215–225

    CAS  PubMed  Google Scholar 

  • Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vardhini BV, Anjum NA (2015) Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Front Environ Sci 2:67

    Google Scholar 

  • Vilarrasa-Blasi J, González-García MP, Frigola D, Fàbregas N, Alexiou KG et al (2014) Regulation of plant stem cell quiescence by a brassinosteroid signaling module. Dev Cell 30:36–47

    CAS  PubMed  Google Scholar 

  • Vriet C, Russinova E, Reuzeau C (2013) From squalene to brassinolide: the steroid metabolic and signaling pathways across the plant kingdom. Mol Plant 6:1738–1757

    CAS  PubMed  Google Scholar 

  • Wang XH, Shu C, Li HY, Hu XQ, Wang YX (2014) Effects of 0.01% brassinolide solution application on yield of rice and its resistance to autumn low-temperature damage. Acta Agric Jiangxi 26:36–38

    CAS  Google Scholar 

  • Wang H, Tang J, Liu J, Hu J, Liu J, Chen Y et al (2018) Abscisic acid signaling inhibits brassinosteroids signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Mol Plant 11:315–325

    CAS  PubMed  Google Scholar 

  • Wei Z, Li J (2016) Brassinosteroids regulate root growth, development, and symbiosis. Mol Plant 9:86–100

    CAS  PubMed  Google Scholar 

  • Wolf S, van der Does D, Ladwig F, Sticht C, Kolbeck A et al (2014) A receptor-like protein mediates the response to pectin modification by activating brassinosteroid signaling. Proc Natl Acad Sci USA 111:15261–15266

    CAS  PubMed  Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH et al (2009a) Reactive oxygen species are involved in brassinosteroid—induced stress tolerance in cucumber. Plant Physiol 150:801–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia XJ, Zhang Y, Wu JX, Wang JT, Zhou YH, Shi K et al (2009b) Brassinosteroids promote metabolism of pesticides in cucumber. J Agric Food Chem 57:8406–8413

    CAS  PubMed  Google Scholar 

  • Xia XJ, Gao CJ, Song LX, Zhou YH, Shi K, Yu JQ (2014) Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum. Plant Cell Environ 37:2036–2050

    CAS  PubMed  Google Scholar 

  • Yang X, Bai Y, Shang J, Xin R, Tang W (2016) The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1. Plant Cell Environ 39:1994–2003

    CAS  PubMed  Google Scholar 

  • Zeng H, Tang Q, Hua X (2010) Arabidopsis brassinosteroid mutants det2-1 and bin2-1 display altered salt tolerance. J Plant Growth Regul 29:44–52

    Google Scholar 

  • Zhang MC, Zhai ZX, Tian XL, Duan LS, Li ZH (2008) Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regul 56:257–264

    CAS  Google Scholar 

  • Zhang S, Cai Z, Wang X (2009) The primary signaling outputs of brassinosteroids are regulated by abscisic acid signalling. Proc Natl Acad Sci USA 106:4543–4548

    CAS  PubMed  Google Scholar 

  • Zhang YP, Zhu XH, Ding HD, Yang SJ, Chen YY (2013) Foliar application of 24-epibrassinolide alleviates high-temperature-induced inhibition of photosynthesis in seedlings of two melon cultivars. Photosynthetica 51:341–349

    CAS  Google Scholar 

  • Zhang S, Wang S, Xu Y, Yu C, Shen C, Qian Q et al (2014) The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1. Plant Cell Environ 38:638–654

    PubMed  Google Scholar 

  • Zhu T, Deng X, Zhou X, Zhu L, Zou L, Li P et al (2016) Ethylene and hydrogen peroxide are involved in brassinosteroids-induced salt tolerance in tomato. Sci Rep 6:35392

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support from Council of Scientific and Industrial Research (CSIR), Government of India through the research Grant [38(1387)/14/EMR-II] to Dr. Aryadeep Roychoudhury is gratefully acknowledged. The authors thank University Grants Commission, Government of India for providing Junior Research Fellowship to Mr. Aditya Banerjee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aryadeep Roychoudhury.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Roychoudhury, A. Interactions of Brassinosteroids with Major Phytohormones: Antagonistic Effects. J Plant Growth Regul 37, 1025–1032 (2018). https://doi.org/10.1007/s00344-018-9828-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-018-9828-5

Keywords

Navigation